Select Git revision
ALL_Staggered.hpp
data_preparation.py 16.91 KiB
__author__ = 'Felix Kleinert, Lukas Leufen'
__date__ = '2019-10-16'
import xarray as xr
import pandas as pd
import numpy as np
import logging
import os
from src import join, helpers
from src import statistics
from typing import Union, List, Iterable
import datetime as dt
# define a more general date type for type hinting
date = Union[dt.date, dt.datetime]
class DataPrep(object):
"""
This class prepares data to be used in neural networks. The instance searches for local stored data, that meet the
given demands. If no local data is found, the DataPrep instance will load data from TOAR database and store this
data locally to use the next time. For the moment, there is only support for daily aggregated time series. The
aggregation can be set manually and differ for each variable.
After data loading, different data pre-processing steps can be executed to prepare the data for further
applications. Especially the following methods can be used for the pre-processing step:
- interpolate: interpolate between data points by using xarray's interpolation method
- standardise: standardise data to mean=1 and std=1, centralise to mean=0, additional methods like normalise on
interval [0, 1] are not implemented yet.
- make window history: represent the history (time steps before) for training/ testing; X
- make labels: create target vector with given leading time steps for training/ testing; y
- remove Nans jointly from desired input and output, only keeps time steps where no NaNs are present in X AND y. Use
this method after the creation of the window history and labels to clean up the data cube.
To create a DataPrep instance, it is needed to specify the stations by id (e.g. "DEBW107"), its network (e.g. UBA,
"Umweltbundesamt") and the variables to use. Further options can be set in the instance.
* `statistics_per_var`: define a specific statistic to extract from the TOAR database for each variable.
* `start`: define a start date for the data cube creation. Default: Use the first entry in time series
* `end`: set the end date for the data cube. Default: Use last date in time series.
* `store_data_locally`: store recently downloaded data on local disk. Default: True
* set further parameters for xarray's interpolation methods to modify the interpolation scheme
"""
def __init__(self, path: str, network: str, station: Union[str, List[str]], variables: List[str],
station_type: str = None, **kwargs):
self.path = os.path.abspath(path)
self.network = network
self.station = helpers.to_list(station)
self.variables = variables
self.station_type = station_type
self.mean = None
self.std = None
self.history = None
self.label = None
self.kwargs = kwargs
self.data = None
self.meta = None
self._transform_method = None
self.statistics_per_var = kwargs.get("statistics_per_var", None)
if self.statistics_per_var is not None:
self.load_data()
else:
raise NotImplementedError # hourly data usage is not implemented yet
# self.data, self.meta = Fkf.read_hourly_data_from_csv_to_xarray(self.path, self.network, self.station,
# self.variables, **kwargs)
def load_data(self):
"""
Load data and meta data either from local disk (preferred) or download new data from TOAR database if no local
data is available. The latter case, store downloaded data locally if wished (default yes).
"""
helpers.check_path_and_create(self.path)
file_name = self._set_file_name()
meta_file = self._set_meta_file_name()
try:
data = self._slice_prep(xr.open_dataarray(file_name))
self.data = self.check_for_negative_concentrations(data)
self.meta = pd.read_csv(meta_file, index_col=0)
if self.station_type is not None:
self.check_station_type()
except FileNotFoundError as e:
logging.warning(e)
data, self.meta = self.download_data_from_join(file_name, meta_file)
data = self._slice_prep(data)
self.data = self.check_for_negative_concentrations(data)
def check_station_type(self):
"""
Search for the `station_type` entry in meta data and compare the value with the requested station_type. Raise
an EmptyQueryResult error if the values mismatch.
"""
if self.meta.at["station_type", self.station[0]] != self.station_type:
raise join.EmptyQueryResult
def download_data_from_join(self, file_name: str, meta_file: str) -> [xr.DataArray, pd.DataFrame]:
"""
Download data from TOAR database using the JOIN interface.
:param file_name:
:param meta_file:
:return:
"""
df_all = {}
df, meta = join.download_join(station_name=self.station, statvar=self.statistics_per_var,
station_type=self.station_type, network_name=self.network)
df_all[self.station[0]] = df
# convert df_all to xarray
xarr = {k: xr.DataArray(v, dims=['datetime', 'variables']) for k, v in df_all.items()}
xarr = xr.Dataset(xarr).to_array(dim='Stations')
if self.kwargs.get('store_data_locally', True):
# save locally as nc/csv file
xarr.to_netcdf(path=file_name)
meta.to_csv(meta_file)
return xarr, meta
def _set_file_name(self):
return os.path.join(self.path, f"{''.join(self.station)}_{'_'.join(sorted(self.variables))}.nc")
def _set_meta_file_name(self):
return os.path.join(self.path, f"{''.join(self.station)}_{'_'.join(sorted(self.variables))}_meta.csv")
def __repr__(self):
return f"Dataprep(path='{self.path}', network='{self.network}', station={self.station}, " \
f"variables={self.variables}, station_type='{self.station_type}', **{self.kwargs})"
def interpolate(self, dim: str, method: str = 'linear', limit: int = None,
use_coordinate: Union[bool, str] = True, **kwargs):
"""
(Copy paste from dataarray.interpolate_na)
Interpolate values according to different methods.
:param dim:
Specifies the dimension along which to interpolate.
:param method:
{'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
'polynomial', 'barycentric', 'krog', 'pchip',
'spline', 'akima'}, optional
String indicating which method to use for interpolation:
- 'linear': linear interpolation (Default). Additional keyword
arguments are passed to ``numpy.interp``
- 'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
'polynomial': are passed to ``scipy.interpolate.interp1d``. If
method=='polynomial', the ``order`` keyword argument must also be
provided.
- 'barycentric', 'krog', 'pchip', 'spline', and `akima`: use their
respective``scipy.interpolate`` classes.
:param limit:
default None
Maximum number of consecutive NaNs to fill. Must be greater than 0
or None for no limit.
:param use_coordinate:
default True
Specifies which index to use as the x values in the interpolation
formulated as `y = f(x)`. If False, values are treated as if
eqaully-spaced along `dim`. If True, the IndexVariable `dim` is
used. If use_coordinate is a string, it specifies the name of a
coordinate variariable to use as the index.
:param kwargs:
:return: xarray.DataArray
"""
self.data = self.data.interpolate_na(dim=dim, method=method, limit=limit, use_coordinate=use_coordinate,
**kwargs)
@staticmethod
def check_inverse_transform_params(mean, std, method) -> None:
msg = ""
if method in ['standardise', 'centre'] and mean is None:
msg += "mean, "
if method == 'standardise' and std is None:
msg += "std, "
if len(msg) > 0:
raise AttributeError(f"Inverse transform {method} can not be executed because following is None: {msg}")
def inverse_transform(self) -> None:
"""
Perform inverse transformation
:return:
"""
def f_inverse(data, mean, std, method_inverse):
if method_inverse == 'standardise':
return statistics.standardise_inverse(data, mean, std), None, None
elif method_inverse == 'centre':
return statistics.centre_inverse(data, mean), None, None
elif method_inverse == 'normalise':
raise NotImplementedError
else:
raise NotImplementedError
if self._transform_method is None:
raise AssertionError("Inverse transformation method is not set. Data cannot be inverse transformed.")
self.check_inverse_transform_params(self.mean, self.std, self._transform_method)
self.data, self.mean, self.std = f_inverse(self.data, self.mean, self.std, self._transform_method)
self._transform_method = None
def transform(self, dim: Union[str, int] = 0, method: str = 'standardise', inverse: bool = False) -> None:
"""
This function transforms a xarray.dataarray (along dim) or pandas.DataFrame (along axis) either with mean=0
and std=1 (`method=standardise`) or centers the data with mean=0 and no change in data scale
(`method=centre`). Furthermore, this sets an internal instance attribute for later inverse transformation. This
method will raise an AssertionError if an internal transform method was already set ('inverse=False') or if the
internal transform method, internal mean and internal standard deviation weren't set ('inverse=True').
:param string/int dim: This param is not used for inverse transformation.
| for xarray.DataArray as string: name of dimension which should be standardised
| for pandas.DataFrame as int: axis of dimension which should be standardised
:param method: Choose the transformation method from 'standardise' and 'centre'. 'normalise' is not implemented
yet. This param is not used for inverse transformation.
:param inverse: Switch between transformation and inverse transformation.
:return: xarray.DataArrays or pandas.DataFrames:
#. mean: Mean of data
#. std: Standard deviation of data
#. data: Standardised data
"""
def f(data):
if method == 'standardise':
return statistics.standardise(data, dim)
elif method == 'centre':
return statistics.centre(data, dim)
elif method == 'normalise':
# use min/max of data or given min/max
raise NotImplementedError
else:
raise NotImplementedError
if not inverse:
if self._transform_method is not None:
raise AssertionError(f"Transform method is already set. Therefore, data was already transformed with "
f"{self._transform_method}. Please perform inverse transformation of data first.")
self.mean, self.std, self.data = f(self.data)
self._transform_method = method
else:
self.inverse_transform()
def make_history_window(self, dim: str, window: int) -> None:
"""
This function uses shifts the data window+1 times and returns a xarray which has a new dimension 'window'
containing the shifted data. This is used to represent history in the data. Results are stored in self.history .
:param dim: Dimension along shift will be applied
:param window: number of time steps to look back in history
Note: window will be treated as negative value. This should be in agreement with looking back on
a time line. Nonetheless positive values are allowed but they are converted to its negative
expression
"""
window = -abs(window)
self.history = self.shift(dim, window)
def shift(self, dim: str, window: int) -> xr.DataArray:
"""
This function uses xarray's shift function multiple times to represent history (if window <= 0)
or lead time (if window > 0)
:param dim: dimension along shift is applied
:param window: number of steps to shift (corresponds to the window length)
:return:
"""
start = 1
end = 1
if window <= 0:
start = window
else:
end = window + 1
res = []
for w in range(start, end):
res.append(self.data.shift({dim: -w}))
window_array = self.create_index_array('window', range(start, end))
res = xr.concat(res, dim=window_array)
return res
def make_labels(self, dim_name_of_target: str, target_var: str, dim_name_of_shift: str, window: int) -> None:
"""
This function creates a xarray.DataArray containing labels
:param dim_name_of_target: Name of dimension which contains the target variable
:param target_var: Name of target variable in 'dimension'
:param dim_name_of_shift: Name of dimension on which xarray.DataArray.shift will be applied
:param window: lead time of label
"""
window = abs(window)
self.label = self.shift(dim_name_of_shift, window).sel({dim_name_of_target: target_var})
def history_label_nan_remove(self, dim: str) -> None:
"""
All NAs slices in dim which contain nans in self.history or self.label are removed in both data sets.
This is done to present only a full matrix to keras.fit.
:param dim:
:return:
"""
intersect = []
if (self.history is not None) and (self.label is not None):
non_nan_history = self.history.dropna(dim=dim)
non_nan_label = self.label.dropna(dim=dim)
intersect = np.intersect1d(non_nan_history.coords[dim].values,
non_nan_label.coords[dim].values)
if len(intersect) == 0:
self.history = None
self.label = None
else:
self.history = self.history.sel({dim: intersect})
self.label = self.label.sel({dim: intersect})
@staticmethod
def create_index_array(index_name: str, index_value: Iterable[int]) -> xr.DataArray:
"""
This Function crates a 1D xarray.DataArray with given index name and value
:param index_name:
:param index_value:
:return:
"""
ind = pd.DataFrame({'val': index_value}, index=index_value)
res = xr.Dataset.from_dataframe(ind).to_array().rename({'index': index_name}).squeeze(dim='variable', drop=True)
res.name = index_name
return res
def _slice_prep(self, data: xr.DataArray, coord: str = 'datetime') -> xr.DataArray:
"""
This function prepares all settings for slicing and executes _slice
:param data:
:param coord: name of axis to slice
:return:
"""
start = self.kwargs.get('start', data.coords[coord][0].values)
end = self.kwargs.get('end', data.coords[coord][-1].values)
return self._slice(data, start, end, coord)
@staticmethod
def _slice(data: xr.DataArray, start: Union[date, str], end: Union[date, str], coord: str) -> xr.DataArray:
"""
This function slices through a given data_item (for example select only values of 2011)
:param data:
:param start:
:param end:
:param coord: name of axis to slice
:return:
"""
return data.loc[{coord: slice(start, end)}]
def check_for_negative_concentrations(self, data: xr.DataArray, minimum: int = 0) -> xr.DataArray:
"""
This function sets all negative concentrations to zero. Names of all concentrations are extracted from
https://join.fz-juelich.de/services/rest/surfacedata/ #2.1 Parameters
:param data:
:param minimum:
:return:
"""
chem_vars = ["benzene", "ch4", "co", "ethane", "no", "no2", "nox", "o3", "ox", "pm1", "pm10", "pm2p5",
"propane", "so2", "toluene"]
used_chem_vars = list(set(chem_vars) & set(self.variables))
data.loc[..., used_chem_vars] = data.loc[..., used_chem_vars].clip(min=minimum)
return data
if __name__ == "__main__":
dp = DataPrep('data/', 'dummy', 'DEBW107', ['o3', 'temp'], statistics_per_var={'o3': 'dma8eu', 'temp': 'maximum'})
print(dp)