Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
Bayesian Statistical Learning 2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Alina Bazarova
Bayesian Statistical Learning 2
Commits
279916d3
Commit
279916d3
authored
3 weeks ago
by
Steve Schmerler
Browse files
Options
Downloads
Patches
Plain Diff
Draft of 03_one_dim_SVI
parent
f4c2b31f
Branches
Branches containing commit
No related tags found
1 merge request
!2
Update GP slides and notebooks
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
BLcourse2.3/03_one_dim_SVI.py
+330
-0
330 additions, 0 deletions
BLcourse2.3/03_one_dim_SVI.py
with
330 additions
and
0 deletions
BLcourse2.3/03_one_dim_SVI.py
0 → 100644
+
330
−
0
View file @
279916d3
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.17.1
# kernelspec:
# display_name: bayes-ml-course
# language: python
# name: bayes-ml-course
# ---
# In this notebook, we replace the ExactGP inference by using SVI (stochastic
# variational inference).
#
# $\newcommand{\ve}[1]{\mathit{\boldsymbol{#1}}}$
# $\newcommand{\ma}[1]{\mathbf{#1}}$
# $\newcommand{\pred}[1]{\rm{#1}}$
# $\newcommand{\predve}[1]{\mathbf{#1}}$
# $\newcommand{\test}[1]{#1_*}$
# $\newcommand{\testtest}[1]{#1_{**}}$
# $\DeclareMathOperator{\diag}{diag}$
# $\DeclareMathOperator{\cov}{cov}$
# # Imports, helpers, setup
# ##%matplotlib notebook
# %matplotlib widget
# ##%matplotlib inline
# +
import
math
from
collections
import
defaultdict
from
pprint
import
pprint
import
torch
import
gpytorch
from
matplotlib
import
pyplot
as
plt
from
matplotlib
import
is_interactive
import
numpy
as
np
from
torch.utils.data
import
TensorDataset
,
DataLoader
from
utils
import
extract_model_params
,
plot_samples
torch
.
set_default_dtype
(
torch
.
float64
)
torch
.
manual_seed
(
123
)
# -
# # Generate toy 1D data
# +
def
ground_truth
(
x
,
const
):
return
torch
.
sin
(
x
)
*
torch
.
exp
(
-
0.2
*
x
)
+
const
def
generate_data
(
x
,
gaps
=
[[
1
,
3
]],
const
=
None
,
noise_std
=
None
):
noise_dist
=
torch
.
distributions
.
Normal
(
loc
=
0
,
scale
=
noise_std
)
y
=
ground_truth
(
x
,
const
=
const
)
+
noise_dist
.
sample
(
sample_shape
=
(
len
(
x
),)
)
msk
=
torch
.
tensor
([
True
]
*
len
(
x
))
if
gaps
is
not
None
:
for
g
in
gaps
:
msk
=
msk
&
~
((
x
>
g
[
0
])
&
(
x
<
g
[
1
]))
return
x
[
msk
],
y
[
msk
],
y
const
=
5.0
noise_std
=
0.1
x
=
torch
.
linspace
(
0
,
4
*
math
.
pi
,
1000
)
X_train
,
y_train
,
y_gt_train
=
generate_data
(
x
,
gaps
=
[[
6
,
10
]],
const
=
const
,
noise_std
=
noise_std
)
X_pred
=
torch
.
linspace
(
X_train
[
0
]
-
2
,
X_train
[
-
1
]
+
2
,
200
,
requires_grad
=
False
)
y_gt_pred
=
ground_truth
(
X_pred
,
const
=
const
)
print
(
f
"
{
X_train
.
shape
=
}
"
)
print
(
f
"
{
y_train
.
shape
=
}
"
)
print
(
f
"
{
X_pred
.
shape
=
}
"
)
##fig, ax = plt.subplots()
##ax.scatter(X_train, y_train, marker="o", color="tab:blue", label="noisy data")
##ax.plot(X_pred, y_gt_pred, ls="--", color="k", label="ground truth")
##ax.legend()
# -
# # Define GP model
# +
class
ApproxGPModel
(
gpytorch
.
models
.
ApproximateGP
):
"""
API:
model.forward() prior f_pred
model() posterior f_pred
likelihood(model.forward()) prior with noise y_pred
likelihood(model()) posterior with noise y_pred
"""
def
__init__
(
self
,
X_ind
):
variational_distribution
=
(
gpytorch
.
variational
.
CholeskyVariationalDistribution
(
X_ind
.
size
(
0
))
)
variational_strategy
=
gpytorch
.
variational
.
VariationalStrategy
(
self
,
X_ind
,
variational_distribution
,
learn_inducing_locations
=
False
,
)
super
().
__init__
(
variational_strategy
)
self
.
mean_module
=
gpytorch
.
means
.
ConstantMean
()
self
.
covar_module
=
gpytorch
.
kernels
.
ScaleKernel
(
gpytorch
.
kernels
.
RBFKernel
()
)
def
forward
(
self
,
x
):
"""
The prior, defined in terms of the mean and covariance function.
"""
mean_x
=
self
.
mean_module
(
x
)
covar_x
=
self
.
covar_module
(
x
)
return
gpytorch
.
distributions
.
MultivariateNormal
(
mean_x
,
covar_x
)
likelihood
=
gpytorch
.
likelihoods
.
GaussianLikelihood
()
n_train
=
len
(
X_train
)
ind_points_fraction
=
0.1
ind_idxs
=
torch
.
randperm
(
n_train
)[:
int
(
n_train
*
ind_points_fraction
)]
model
=
ApproxGPModel
(
X_ind
=
X_train
[
ind_idxs
])
# -
# Inspect the model
print
(
model
)
# Inspect the likelihood. In contrast to ExactGP, the likelihood is not part of
# the GP model instance.
print
(
likelihood
)
# Default start hyper params
print
(
"
model params:
"
)
pprint
(
extract_model_params
(
model
,
raw
=
False
,
try_item
=
False
))
print
(
"
likelihood params:
"
)
pprint
(
extract_model_params
(
likelihood
,
raw
=
False
,
try_item
=
False
))
# +
# Set new start hyper params
model
.
mean_module
.
constant
=
3.0
model
.
covar_module
.
base_kernel
.
lengthscale
=
1.0
model
.
covar_module
.
outputscale
=
1.0
likelihood
.
noise_covar
.
noise
=
0.3
##print("model params:")
##pprint(extract_model_params(model, raw=False, try_item=False))
##print("likelihood params:")
##pprint(extract_model_params(likelihood, raw=False, try_item=False))
# -
# # Fit GP to data: optimize hyper params
# +
# Train mode
model
.
train
()
likelihood
.
train
()
optimizer
=
torch
.
optim
.
Adam
(
[
dict
(
params
=
model
.
parameters
()),
dict
(
params
=
likelihood
.
parameters
())],
lr
=
0.1
,
)
loss_func
=
gpytorch
.
mlls
.
VariationalELBO
(
likelihood
,
model
,
num_data
=
X_train
.
shape
[
0
]
)
train_dl
=
DataLoader
(
TensorDataset
(
X_train
,
y_train
),
batch_size
=
len
(
X_train
)
//
2
,
shuffle
=
True
)
n_iter
=
200
history
=
defaultdict
(
list
)
for
i_iter
in
range
(
n_iter
):
for
i_batch
,
(
X_batch
,
y_batch
)
in
enumerate
(
train_dl
):
batch_history
=
defaultdict
(
list
)
optimizer
.
zero_grad
()
loss
=
-
loss_func
(
model
(
X_batch
),
y_batch
)
loss
.
backward
()
optimizer
.
step
()
param_dct
=
dict
()
param_dct
.
update
(
extract_model_params
(
model
,
try_item
=
True
))
param_dct
.
update
(
extract_model_params
(
likelihood
,
try_item
=
True
))
for
p_name
,
p_val
in
param_dct
.
items
():
if
isinstance
(
p_val
,
float
):
batch_history
[
p_name
].
append
(
p_val
)
batch_history
[
"
loss
"
].
append
(
loss
.
item
())
for
p_name
,
p_lst
in
batch_history
.
items
():
history
[
p_name
].
append
(
np
.
mean
(
p_lst
))
if
(
i_iter
+
1
)
%
10
==
0
:
print
(
f
"
iter
{
i_iter
+
1
}
/
{
n_iter
}
,
{
loss
=
:
.
3
f
}
"
)
# -
# Plot hyper params and loss (negative log marginal likelihood) convergence
ncols
=
len
(
history
)
fig
,
axs
=
plt
.
subplots
(
ncols
=
ncols
,
nrows
=
1
,
figsize
=
(
ncols
*
5
,
5
))
with
torch
.
no_grad
():
for
ax
,
(
p_name
,
p_lst
)
in
zip
(
axs
,
history
.
items
()):
ax
.
plot
(
p_lst
)
ax
.
set_title
(
p_name
)
ax
.
set_xlabel
(
"
iterations
"
)
# Values of optimized hyper params
print
(
"
model params:
"
)
pprint
(
extract_model_params
(
model
,
raw
=
False
,
try_item
=
False
))
print
(
"
likelihood params:
"
)
pprint
(
extract_model_params
(
likelihood
,
raw
=
False
,
try_item
=
False
))
# # Run prediction
# +
# Evaluation (predictive posterior) mode
model
.
eval
()
likelihood
.
eval
()
with
torch
.
no_grad
():
M
=
10
post_pred_f
=
model
(
X_pred
)
post_pred_y
=
likelihood
(
model
(
X_pred
))
fig
,
axs
=
plt
.
subplots
(
ncols
=
2
,
figsize
=
(
12
,
5
),
sharex
=
True
,
sharey
=
True
)
fig_sigmas
,
ax_sigmas
=
plt
.
subplots
()
for
ii
,
(
ax
,
post_pred
,
name
,
title
)
in
enumerate
(
zip
(
axs
,
[
post_pred_f
,
post_pred_y
],
[
"
f
"
,
"
y
"
],
[
"
epistemic uncertainty
"
,
"
total uncertainty
"
],
)
):
yf_mean
=
post_pred
.
mean
yf_samples
=
post_pred
.
sample
(
sample_shape
=
torch
.
Size
((
M
,)))
yf_std
=
post_pred
.
stddev
lower
=
yf_mean
-
2
*
yf_std
upper
=
yf_mean
+
2
*
yf_std
ax
.
plot
(
X_train
.
numpy
(),
y_train
.
numpy
(),
"
o
"
,
label
=
"
data
"
,
color
=
"
tab:blue
"
,
)
ax
.
plot
(
X_pred
.
numpy
(),
yf_mean
.
numpy
(),
label
=
"
mean
"
,
color
=
"
tab:red
"
,
lw
=
2
,
)
ax
.
plot
(
X_pred
.
numpy
(),
y_gt_pred
.
numpy
(),
label
=
"
ground truth
"
,
color
=
"
k
"
,
lw
=
2
,
ls
=
"
--
"
,
)
ax
.
fill_between
(
X_pred
.
numpy
(),
lower
.
numpy
(),
upper
.
numpy
(),
label
=
"
confidence
"
,
color
=
"
tab:orange
"
,
alpha
=
0.3
,
)
ax
.
set_title
(
f
"
confidence =
{
title
}
"
)
if
name
==
"
f
"
:
sigma_label
=
r
"
epistemic: $\pm 2\sqrt{\mathrm{diag}(\Sigma_*)}$
"
zorder
=
1
else
:
sigma_label
=
(
r
"
total: $\pm 2\sqrt{\mathrm{diag}(\Sigma_* + \sigma_n^2\,I)}$
"
)
zorder
=
0
ax_sigmas
.
fill_between
(
X_pred
.
numpy
(),
lower
.
numpy
(),
upper
.
numpy
(),
label
=
sigma_label
,
color
=
"
tab:orange
"
if
name
==
"
f
"
else
"
tab:blue
"
,
alpha
=
0.5
,
zorder
=
zorder
,
)
y_min
=
y_train
.
min
()
y_max
=
y_train
.
max
()
y_span
=
y_max
-
y_min
ax
.
set_ylim
([
y_min
-
0.3
*
y_span
,
y_max
+
0.3
*
y_span
])
plot_samples
(
ax
,
X_pred
,
yf_samples
,
label
=
"
posterior pred. samples
"
)
if
ii
==
1
:
ax
.
legend
()
ax_sigmas
.
set_title
(
"
total vs. epistemic uncertainty
"
)
ax_sigmas
.
legend
()
# -
# # Let's check the learned noise
# +
# Target noise to learn
print
(
"
data noise:
"
,
noise_std
)
# The two below must be the same
print
(
"
learned noise:
"
,
(
post_pred_y
.
stddev
**
2
-
post_pred_f
.
stddev
**
2
).
mean
().
sqrt
().
item
(),
)
print
(
"
learned noise:
"
,
np
.
sqrt
(
extract_model_params
(
likelihood
,
raw
=
False
)[
"
noise_covar.noise
"
]
),
)
# -
# When running as script
if
not
is_interactive
():
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment