Skip to content
Snippets Groups Projects
Commit 714c6479 authored by Jedrzej Rybicki's avatar Jedrzej Rybicki
Browse files

wi

parent 1f841697
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id:9888d9d2 tags:
``` python
import numpy as np
from sklearn.linear_model import LogisticRegression
import mlflow
import mlflow.sklearn
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```
%% Cell type:code id:80b8d728 tags:
``` python
mlflow.set_tracking_uri('https://zam10017.zam.kfa-juelich.de/')
```
%% Cell type:code id:f1d93fa1 tags:
``` python
#mlflow.set_tracking_uri('http://0.0.0.0:8080')
```
%% Cell type:code id:be2d99b3 tags:
``` python
mlflow.set_experiment('mysimple')
mlflow.set_experiment('mysimple-newest')
```
%% Output
2022/11/16 09:58:15 INFO mlflow.tracking.fluent: Experiment with name 'mysimple' does not exist. Creating a new experiment.
2023/03/10 08:12:09 INFO mlflow.tracking.fluent: Experiment with name 'mysimple-newest' does not exist. Creating a new experiment.
<Experiment: artifact_location='mlflow-artifacts:/1', creation_time=1668589095429, experiment_id='1', last_update_time=1668589095429, lifecycle_stage='active', name='mysimple', tags={}>
<Experiment: artifact_location='mlflow-artifacts:/3', creation_time=1678432329268, experiment_id='3', last_update_time=1678432329268, lifecycle_stage='active', name='mysimple-newest', tags={}>
%% Cell type:code id:d9601ea6 tags:
``` python
X = np.array([-2, -1, 0, 1, 2, 1]).reshape(-1, 1)
y = np.array([0, 0, 1, 1, 1, 0])
```
%% Cell type:code id:afa87aec tags:
``` python
mlflow.end_run()
```
%% Cell type:code id:e59e2ae7 tags:
``` python
for c in range(1,100, 20):
with mlflow.start_run():
C = float(c)/100.0
mlflow.log_param('C', value=C)
lr = LogisticRegression(C=C)
lr.fit(X, y)
score = lr.score(X, y)
print(f"{C} score: {score}")
mlflow.log_metric("score", score)
mlflow.sklearn.log_model(lr, "model")
```
%% Output
0.01 score: 0.6666666666666666
0.21 score: 0.6666666666666666
0.41 score: 0.6666666666666666
0.61 score: 0.6666666666666666
0.81 score: 0.6666666666666666
%% Cell type:code id:657d86bc tags:
``` python
my = lr.predict(X)
```
%% Cell type:code id:2f5b27cd tags:
``` python
fig, axs = plt.subplots(1)
axs.scatter(X, y,c='r', label='data')
axs.plot(X, my, label='prediction')
fig.legend();
mlflow.log_figure(fig, 'myplot.png')
```
%% Output
%% Cell type:code id:277c8e1f tags:
%% Cell type:code id:0d1e4309 tags:
``` python
```
%% Cell type:code id:0d1e4309 tags:
%% Cell type:markdown id:eab1663c tags:
## Loading model from the repo
%% Cell type:code id:f4d5aaa9 tags:
``` python
mod = mlflow.sklearn.load_model('mlflow-artifacts:/2/72a5223cf23c48ae9a3326fbac8eb6c5/artifacts/model')
```
%% Cell type:code id:f37f404f tags:
``` python
mod.predict_proba(X)
```
%% Cell type:code id:a48f25df tags:
%% Output
array([[0.81845867, 0.18154133],
[0.69409719, 0.30590281],
[0.53313875, 0.46686125],
[0.36497272, 0.63502728],
[0.22435935, 0.77564065],
[0.36497272, 0.63502728]])
%% Cell type:code id:6254eabf tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment