Skip to content
Snippets Groups Projects
Select Git revision
  • 02055510025f9bc5e40a56d0fbe56372f1e87cc9
  • master default
  • bing_issues#190_tf2
  • bing_tf2_convert
  • bing_issue#189_train_modular
  • simon_#172_integrate_weatherbench
  • develop
  • bing_issue#188_restructure_ambs
  • yan_issue#100_extract_prcp_data
  • bing_issue#170_data_preprocess_training_tf1
  • Gong2022_temperature_forecasts
  • bing_issue#186_clean_GMD1_tag
  • yan_issue#179_integrate_GZAWS_data_onfly
  • bing_issue#178_runscript_bug_postprocess
  • michael_issue#187_bugfix_setup_runscript_template
  • bing_issue#180_bugs_postprpocess_meta_postprocess
  • yan_issue#177_repo_for_CLGAN_gmd
  • bing_issue#176_integrate_weather_bench
  • michael_issue#181_eval_era5_forecasts
  • michael_issue#182_eval_subdomain
  • michael_issue#119_warmup_Horovod
  • bing_issue#160_test_zam347
  • ambs_v1
  • ambs_gmd_nowcasting_v1.0
  • GMD1
  • modular_booster_20210203
  • new_structure_20201004_v1.0
  • old_structure_20200930
28 results

structure_name_convention.md

Blame
  • This is the output folder structure and name convention

    Shared folder structure

    ├── ExtractedData
    │   ├── [Year]
    │   │   ├── [Month]
    │   │   │   ├── **/*.netCDF
    ├── PreprocessedData
    │   ├── [Data_name_convention]
    │   │   ├── hickle
    │   │   │   ├── train
    │   │   │   ├── val
    │   │   │   ├── test
    │   │   ├── tfrecords
    │   │   │   ├── train
    │   │   │   ├── val
    │   │   │   ├── test
    ├── Models
    │   ├── [Data_name_convention]
    │   │   ├── [model_name]
    │   │   ├── [model_name]
    ├── Results
    │   ├── [Data_name_convention]
    │   │   ├── [training_mode]
    │   │   │   ├── [source_data_name_convention]
    │   │   │   │   ├── [model_name]
    
    Arguments Value
    [Year] 2005;2005;2007 ...
    [Month] 01;02;03 ...,12
    [Data_name_convention] Y[yyyy]to[yyyy]M[mm]to[mm]-[nx][ny]-[nn.nn]N[ee.ee]E-[var1][var2]_[var3]
    [model_name] Ours_savp; ours_gan; ours_vae; prednet
    [training_mode] end_to_end; transfer_learning

    Data name convention

    Y[yyyy]to[yyyy]M[mm]to[mm]-[nx]_[ny]-[nn.nn]N[ee.ee]E-[var1]_[var2]_[var3]

    • Y[yyyy]to[yyyy]M[mm]to[mm]
    • [nx]_[ny] : the size of images,e.g 64_64 means 64*64 pixels
    • [nn.nn]N[ee.ee]E :the geolocation of selected regions with two decimal points. e.g : 0.00N11.50E
    • [var1][var2][var3] : Use the abbrevation of selected variables

    Y[yyyy]to[yyyy]M[mm]to[mm]

    Examples Name abbrevation
    all data from March to June of the years 2005-2015 Y2005toY2015M03to06
    data from February to May of years 2005-2008 + data from March to June of year 2015 Y2005to2008M02to05_Y2015M03to06
    Data from February to May, and October to December of 2005 Y2005M02to05_Y2015M10to12
    operational’ data base: whole year 2016 Y2016M01to12
    add new whole year data of 2017 on the operational data base Y2016to2017M01to12
    Note: Y2016to2017M01to12 = Y2016M01to12_Y2017M01to12

    variable abbrevaition and the corresponding full names

    var full names
    T 2m temperature
    gph500 500 hPa geopotential
    msl meansealevelpressure

    Example

    ├── ExtractedData
    │   ├── 2016
    │   │   ├── 01
    │   │   │   ├── *.netCDF
    │   │   ├── 02
    │   │   ├── 03
    │   │   ├── …
    │   ├── 2017
    │   │   ├── 01
    │   │   ├── …
    ├── PreprocessedData
    │   ├── 2016to2017M01to12-64_64-50.00N11.50E-T_T_T
    │   │   ├── hickle
    │   │   │   ├── train
    │   │   │   ├── val
    │   │   │   ├── test
    │   │   ├── tfrecords
    │   │   │   ├── train
    │   │   │   ├── val
    │   │   │   ├── test
    ├── Models
    │   ├── 2016to2017M01to12-64_64-50.00N11.50E-T_T_T
    │   │   ├── outs_savp
    │   │   ├── outs_gan
    ├── Results
    │   ├── 2016to2017M01to12-64_64-50.00N11.50E-T_T_T
    │   │   ├── end_to_end
    │   │   │   ├── ours_savp
    │   │   │   ├── ours_gan
    │   │   ├── transfer_learning
    │   │   │   ├── 2018M01to12-64_64-50.00N11.50E-T_T_T
    │   │   │   │   ├── ours_savp