Skip to content
Snippets Groups Projects
Commit 1706d4b4 authored by stadtler1's avatar stadtler1
Browse files

Merge remote-tracking branch 'origin/develop' into bing_issue#009_clean_up_postprocessing

parents 5fbdaf71 6e5f2ddf
No related branches found
No related tags found
No related merge requests found
Pipeline #42594 failed
README.md 0 → 100644
# AMBS
Atmopsheric Machine learning Benchmarking Systems (AMBS) aims to privde state-of-the-art benchmarking machine learning architectures for video prediction on HPC in the context of atmospheric domain, which is developed by Amirpasha, Michael, Bing, and Scarlet
### Prerequisites
- Linux or macOS
- Python 3
- CPU or NVIDIA GPU + CUDA CuDNN
- MPI
- Tensorflow 1.13.1
### Installation
- Clone this repo:
```bash
git clone https://gitlab.version.fz-juelich.de/toar/ambs.git
```
### Set-up env on JUWELS and ZAM347
- Setup env and install packages
```bash
cd video_prediction_savp/env_setup
source create_env_zam347.sh <env_name>
```
### Run workflow on JUWELS
- Go to HPC_scripts directory
```bash
cd video_prediction_savp/HPC_scripts
```
- Data Extraction
```bash
sbatch DataExtraction.sh
```
- Data Preprocessing
```bash
sbatch /DataPreprocess.sh
sbatch /DataPreprocess_to_tf.sh
```
- Setup hyperparams
This step will setup the hyper-parameters that used for training, and create a folder named "datetime_user" where save the trained model
```bash
source hyperparam_setup.sh
```
- Training
```bash
sbatch train_era5.sh
```
- Postprocess
```bash
sbatch generate_era5.sh
```
- Reset all the generated path to origin state
```bash
source reset_dirs.sh
```
### Run workflow on ZAM347
- Go to zam347_scripts directory
```bash
cd video_prediction_savp/Zam347_scripts
```
- Data Extraction
```bash
./DataExtraction.sh
```
- Data Preprocessing
```bash
./DataPreprocess.sh
./DataPreprocess_to_tf.sh
```
- Training
```bash
./train_era5.sh
```
- Postprocess
```bash
./generate_era5.sh
```
### Recomendation for output folder structure and name convention
The details can be found [name_convention](docs/structure_name_convention.md)
```
├── ExtractedData
│ ├── [Year]
│ │ ├── [Month]
│ │ │ ├── **/*.netCDF
├── PreprocessedData
│ ├── [Data_name_convention]
│ │ ├── hickle
│ │ │ ├── train
│ │ │ ├── val
│ │ │ ├── test
│ │ ├── tfrecords
│ │ │ ├── train
│ │ │ ├── val
│ │ │ ├── test
├── Models
│ ├── [Data_name_convention]
│ │ ├── [model_name]
│ │ ├── [model_name]
├── Results
│ ├── [Data_name_convention]
│ │ ├── [training_mode]
│ │ │ ├── [source_data_name_convention]
│ │ │ │ ├── [model_name]
```
### Benchmarking architectures:
- convLSTM: [paper](https://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf),[code](https://github.com/loliverhennigh/Convolutional-LSTM-in-Tensorflow)
- Variational Autoencoder:[paper](https://arxiv.org/pdf/1312.6114.pdf)
- Stochastic Adversarial Video Prediction (SAVP): [paper](https://arxiv.org/pdf/1804.01523.pdf),[code](https://github.com/alexlee-gk/video_prediction)
- Motion and Content Network (MCnet): [paper](https://arxiv.org/pdf/1706.08033.pdf), [code](https://github.com/rubenvillegas/iclr2017mcnet)
### Contact
- Amirpash Mozafarri: a.mozafarri@fz-juelich.de
- Michael Langguth: m.langguth@fz-juelich.de
- Bing Gong: b.gong@fz-juelich.de
- Scarlet Stadtler: s.stadtler@fz-juelich.de
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment