Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
AMBS
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
AMBS
Commits
1a8545ff
Commit
1a8545ff
authored
5 years ago
by
b.gong
Browse files
Options
Downloads
Patches
Plain Diff
remove output generate_era5-out.out file
parent
3579e79d
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
Zam347_scripts/generate_era5-out.out
+0
-594
0 additions, 594 deletions
Zam347_scripts/generate_era5-out.out
with
0 additions
and
594 deletions
Zam347_scripts/generate_era5-out.out
deleted
100644 → 0
+
0
−
594
View file @
3579e79d
temporal_dir: /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle/splits/
loading options from checkpoint /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
----------------------------------- Options ------------------------------------
batch_size = 2
checkpoint = /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
dataset = era5
dataset_hparams = sequence_length=20
fps = 4
gif_length = None
gpu_mem_frac = 0
input_dir = /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords
mode = test
model = vae
model_hparams = None
num_epochs = 1
num_samples = None
num_stochastic_samples = 1
output_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
output_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
results_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500
results_gif_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500
results_png_dir = /home/b.gong/results/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500
seed = 7
------------------------------------- End --------------------------------------
datset_class ERA5Dataset_v2
FILENAMES ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords']
files ['/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_0_to_1.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_10_to_11.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_12_to_13.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_2_to_3.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_4_to_5.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_6_to_7.tfrecords', '/home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/tfrecords/test/sequence_8_to_9.tfrecords']
mode test
Parse features {'images/encoded': <tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x7f4f87630b70>, 'channels': <tf.Tensor 'ParseSingleExample/ParseSingleExample:3' shape=() dtype=int64>, 'height': <tf.Tensor 'ParseSingleExample/ParseSingleExample:4' shape=() dtype=int64>, 'sequence_length': <tf.Tensor 'ParseSingleExample/ParseSingleExample:5' shape=() dtype=int64>, 'width': <tf.Tensor 'ParseSingleExample/ParseSingleExample:6' shape=() dtype=int64>}
Image shape 20, 128,160,3
DBBUG: INPUT Tensor("strided_slice:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_0_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_0_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_0_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_0_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_1:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_1:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_1_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_1:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_1_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_1_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_1_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_2:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_2:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_2_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_2:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_2_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_2_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_2_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_3:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_3:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_3_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_3:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_3_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_3_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_3_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_4:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_4:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_4_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_4:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_4_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_4_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_4_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_5:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_5:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_5_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_5:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_5_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_5_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_5_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_6:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_6:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_6_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_6:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_6_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_6_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_6_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_7:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_7:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_7_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_7:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_7_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_7_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_7_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_8:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_8:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_8_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_8:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_8_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_8_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_8_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_9:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_9:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_9_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_9:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_9_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_9_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_9_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_10:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_10:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_10_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_10:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_10_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_10_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_10_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_11:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_11:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_11_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_11:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_11_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_11_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_11_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_12:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_12:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_12_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_12:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_12_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_12_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_12_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_13:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_13:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_13_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_13:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_13_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_13_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_13_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_14:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_14:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_14_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_14:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_14_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_14_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_14_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_15:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_15:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_15_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_15:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_15_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_15_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_15_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_16:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_16:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_16_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_16:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_16_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_16_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_16_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_17:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_17:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_17_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_17:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_17_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_17_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_17_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_18:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_18:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_18_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_18:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_18_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_18_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_18_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
DBBUG: INPUT Tensor("strided_slice_19:0", shape=(2, 128, 160, 3), dtype=float32)
conv_layer activation function relu
DEBUG input shape (2, 128, 160, 3)
Encode_1_shape (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 2_shape, (2, 64, 80, 8)
conv_layer activation function relu
DEBUG input shape (2, 64, 80, 8)
Encode 3_shape, (2, 32, 40, 8)
Encode 4_shape, (2, 10240)
conv4_shape [2, 32, 40, 8]
latend variables z Tensor("add_19:0", shape=(2, 16), dtype=float32)
latend variables z2 Tensor("sq_19_deenc_fc1_fc/Relu:0", shape=(2, 10240), dtype=float32)
latend variables z3 Tensor("Reshape_19:0", shape=(2, 32, 40, 8), dtype=float32)
input_channel 8
output_shape Tensor("sq_19_decode_5_trans_conv/stack:0", shape=(4,), dtype=int32)
Decode 5 shape (2, 64, 80, 8)
input_channel 8
output_shape Tensor("sq_19_decode_6_trans_conv/stack:0", shape=(4,), dtype=int32)
input_channel 8
output_shape Tensor("sq_19_decode_8_trans_conv/stack:0", shape=(4,), dtype=int32)
X_hat (2, 128, 160, 3)
X_hat (2, 20, 128, 160, 3)
zlog_sigma_sq_all (2, 20, 16)
creating restore saver from checkpoint /home/b.gong/models/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/vae
temporal_dir: /home/b.gong/preprocessedData/era5-Y2015toY2017M01to12-128x160-74d00N71d00E-T_MSL_gph500/hickle/splits/
test temporal_pkl file looks like folowing [[cftime.DatetimeGregorian(2017-02-01 00:00:00)]
[cftime.DatetimeGregorian(2017-02-01 01:00:00)]
[cftime.DatetimeGregorian(2017-02-01 02:00:00)]
[cftime.DatetimeGregorian(2017-02-01 03:00:00)]
[cftime.DatetimeGregorian(2017-02-01 04:00:00)]
[cftime.DatetimeGregorian(2017-02-01 05:00:00)]
[cftime.DatetimeGregorian(2017-02-01 06:00:00)]
[cftime.DatetimeGregorian(2017-02-01 07:00:00)]
[cftime.DatetimeGregorian(2017-02-01 08:00:00)]
[cftime.DatetimeGregorian(2017-02-01 09:00:00)]
[cftime.DatetimeGregorian(2017-02-01 10:00:00)]
[cftime.DatetimeGregorian(2017-02-01 11:00:00)]
[cftime.DatetimeGregorian(2017-02-01 12:00:00)]
[cftime.DatetimeGregorian(2017-02-01 13:00:00)]
[cftime.DatetimeGregorian(2017-02-01 14:00:00)]
[cftime.DatetimeGregorian(2017-02-01 15:00:00)]
[cftime.DatetimeGregorian(2017-02-01 16:00:00)]
[cftime.DatetimeGregorian(2017-02-01 17:00:00)]
[cftime.DatetimeGregorian(2017-02-01 18:00:00)]
[cftime.DatetimeGregorian(2017-02-01 19:00:00)]
[cftime.DatetimeGregorian(2017-02-01 20:00:00)]
[cftime.DatetimeGregorian(2017-02-01 21:00:00)]
[cftime.DatetimeGregorian(2017-02-01 22:00:00)]
[cftime.DatetimeGregorian(2017-02-01 23:00:00)]
[cftime.DatetimeGregorian(2017-02-02 00:00:00)]
[cftime.DatetimeGregorian(2017-02-02 01:00:00)]
[cftime.DatetimeGregorian(2017-02-02 02:00:00)]
[cftime.DatetimeGregorian(2017-02-02 03:00:00)]
[cftime.DatetimeGregorian(2017-02-02 04:00:00)]
[cftime.DatetimeGregorian(2017-02-02 05:00:00)]
[cftime.DatetimeGregorian(2017-02-02 06:00:00)]
[cftime.DatetimeGregorian(2017-02-02 07:00:00)]
[cftime.DatetimeGregorian(2017-02-02 08:00:00)]
[cftime.DatetimeGregorian(2017-02-02 09:00:00)]]
Sample id 0
Sample id 2
Sample id 4
Sample id 6
Sample id 8
Sample id 10
Sample id 12
Sample id 14
Sample id 16
Sample id 18
Sample id 20
Sample id 22
Sample id 24
Sample id 26
timestamp: <class 'numpy.ndarray'>
persistent ts [cftime.DatetimeGregorian(2017-02-01 02:00:00)]
persistent index in test set: 2
persistent_X.shape (20, 128, 160, 3)
name _Stochastic_id_0_Time_20170202-020000
timestamp: <class 'numpy.ndarray'>
persistent ts [cftime.DatetimeGregorian(2017-02-01 03:00:00)]
persistent index in test set: 3
persistent_X.shape (20, 128, 160, 3)
name _Stochastic_id_0_Time_20170202-030000
Save persistent all
Save generate all
Sample id 28
timestamp: <class 'numpy.ndarray'>
persistent ts [cftime.DatetimeGregorian(2017-02-01 04:00:00)]
persistent index in test set: 4
persistent_X.shape (20, 128, 160, 3)
name _Stochastic_id_0_Time_20170202-040000
timestamp: <class 'numpy.ndarray'>
persistent ts [cftime.DatetimeGregorian(2017-02-01 05:00:00)]
persistent index in test set: 5
persistent_X.shape (20, 128, 160, 3)
name _Stochastic_id_0_Time_20170202-050000
Save persistent all
Save generate all
Sample id 30
timestamp: <class 'numpy.ndarray'>
persistent ts [cftime.DatetimeGregorian(2017-02-01 06:00:00)]
persistent index in test set: 6
persistent_X.shape (20, 128, 160, 3)
name _Stochastic_id_0_Time_20170202-060000
timestamp: <class 'numpy.ndarray'>
persistent ts [cftime.DatetimeGregorian(2017-02-01 07:00:00)]
persistent index in test set: 7
persistent_X.shape (20, 128, 160, 3)
name _Stochastic_id_0_Time_20170202-070000
Save persistent all
Save generate all
Sample id 32
timestamp: <class 'numpy.ndarray'>
persistent ts [cftime.DatetimeGregorian(2017-02-01 08:00:00)]
persistent index in test set: 8
persistent_X.shape (20, 128, 160, 3)
name _Stochastic_id_0_Time_20170202-080000
timestamp: <class 'numpy.ndarray'>
persistent ts [cftime.DatetimeGregorian(2017-02-01 09:00:00)]
persistent index in test set: 9
persistent_X.shape (20, 128, 160, 3)
name _Stochastic_id_0_Time_20170202-090000
Save persistent all
Save generate all
Sample id 34
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment