Skip to content
Snippets Groups Projects
Commit 74162cfb authored by Michael Langguth's avatar Michael Langguth
Browse files

Some rename for Python's naming convention.

parent e1c7dfc4
Branches
Tags
No related merge requests found
......@@ -14,8 +14,9 @@ from video_prediction.datasets.base_dataset import VarLenFeatureVideoDataset
from os import path
import sys
sys.path.append(path.abspath('../../workflow_parallel_frame_prediction/'))
import DataPreprocess.process_netCDF_v2
from DataPreprocess.process_netCDF_v2 import get_unique_vars
from DataPreprocess.process_netCDF_v2 import calc_data_stat.get_stat_vars
from DataPreprocess.process_netCDF_v2 import Calc_data_stat
#from base_dataset import VarLenFeatureVideoDataset
from collections import OrderedDict
from tensorflow.contrib.training import HParams
......@@ -161,7 +162,7 @@ def save_tf_record(output_fname, sequences):
example = tf.train.Example(features=features)
writer.write(example.SerializeToString())
class norm_data:
class Norm_data:
"""
Class for normalizing data. The statistical data for normalization (minimum, maximum, average, standard deviation etc.) is expected to be available from a statistics-dictionary
created with the calc_data_stat-class (see 'process_netCDF_v2.py'.
......@@ -205,7 +206,7 @@ class norm_data:
for varname in self.varnames:
for stat_name in self.known_norms[norm]:
#setattr(self,varname+stat_name,stat_dict[varname][0][stat_name])
setattr(self,varname+stat_name,get_stat_vars(stat_dict,stat_name,varname))
setattr(self,varname+stat_name,Calc_data_stat.get_stat_vars(stat_dict,stat_name,varname))
self.status_ok = True # set status for normalization -> ready
......@@ -215,7 +216,7 @@ class norm_data:
"""
# some sanity checks
if not self.status_ok: raise ValueError("norm_data-object needs to be initialized and checked first.") # status ready?
if not self.status_ok: raise ValueError("Norm_data-instance needs to be initialized and checked first.") # status ready?
if not norm in self.known_norms.keys(): # valid normalization requested?
print("Please select one of the following known normalizations: ")
......@@ -235,7 +236,7 @@ class norm_data:
"""
# some sanity checks
if not self.status_ok: raise ValueError("norm_data-object needs to be initialized and checked first.") # status ready?
if not self.status_ok: raise ValueError("Norm_data-instance needs to be initialized and checked first.") # status ready?
if not norm in self.known_norms.keys(): # valid normalization requested?
print("Please select one of the following known normalizations: ")
......@@ -264,7 +265,7 @@ def read_frames_and_save_tf_records(output_dir,input_dir,partition_name,vars_in,
output_dir = os.path.join(output_dir,partition_name)
os.makedirs(output_dir,exist_ok=True)
norm_cls = norm_data(vars_in) # init normalization-instance
norm_cls = Norm_data(vars_in) # init normalization-instance
nvars = len(vars_in)
# open statistics file and feed it to norm-instance
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment