Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
AMBS
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
AMBS
Commits
ae2d5c09
Commit
ae2d5c09
authored
3 years ago
by
Bing Gong
Browse files
Options
Downloads
Patches
Plain Diff
Upload the plot for forecasts and residue
parent
309adfcb
No related branches found
No related tags found
No related merge requests found
Pipeline
#78266
passed
3 years ago
Stage: build
Stage: test
Stage: deploy
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
video_prediction_tools/utils/plot_ambs_forecast.py
+134
-0
134 additions, 0 deletions
video_prediction_tools/utils/plot_ambs_forecast.py
with
134 additions
and
0 deletions
video_prediction_tools/utils/plot_ambs_forecast.py
0 → 100644
+
134
−
0
View file @
ae2d5c09
#!/usr/bin/env python
# coding: utf-8
"""
Script to plot video frame prediction forecasts of 2m temperature as well as the difference w.r.t. the ground truth.
Data is expected to be saved in netCDF-files produced by main_visualize_postprocess.py (= the postprocessing step of
the AMBS-workflow)
"""
import
xarray
as
xr
import
numpy
as
np
import
pandas
as
pd
import
matplotlib
matplotlib
.
use
(
'
Agg
'
)
import
matplotlib.pyplot
as
plt
import
cartopy
from
mpl_toolkits.basemap
import
Basemap
# The plot function
def
create_plot
(
data
:
xr
.
DataArray
,
data_ref
:
xr
.
DataArray
,
varname
:
str
,
fcst_hour
:
int
,
plt_fname
:
str
):
"""
Creates filled contour plot of the forecast data as well as the difference between forecast and analysis (ground
truth).
ML: So far, only plotting of the 2m temperature is supported (with 12 predicted hours/frames)
:param data: the forecasted data array to be plotted
:param data_ref: the reference data (
'
ground truth
'
)
:param varname: the name of the variable
:param plt_fname: the filename to the store the plot
:return: -
"""
method
=
create_plot
.
__name__
try
:
coords
=
data
.
coords
# handle coordinates and forecast times
lat
,
lon
=
coords
[
"
lat
"
],
coords
[
"
lon
"
]
dates_fcst
=
pd
.
to_datetime
(
coords
[
"
time_forecast
"
].
data
)
except
Exception
as
err
:
print
(
"
%{0}: Could not retrieve expected coordinates lat, lon and time_forecast from data.
"
.
format
(
method
))
raise
err
lons
,
lats
=
np
.
meshgrid
(
lon
,
lat
)
date0
=
dates_fcst
[
0
]
-
(
dates_fcst
[
1
]
-
dates_fcst
[
0
])
date0_str
=
date0
.
strftime
(
"
%Y-%m-%d %H:%M UTC
"
)
fhhs
=
((
dates_fcst
-
date0
)
/
pd
.
Timedelta
(
'
1 hour
'
)).
values
# check data to be plotted since programme is not generic so far
if
np
.
shape
(
dates_fcst
)[
0
]
!=
12
:
raise
ValueError
(
"
%{0}: Currently, only 12 hour forecast can be handled properly.
"
.
format
(
method
))
if
varname
!=
"
2t
"
:
raise
ValueError
(
"
%{0}: Currently, only 2m temperature is plotted nicely properly.
"
.
format
(
method
))
# define levels
clevs
=
np
.
arange
(
-
10.
,
40.
,
1.
)
clevs_diff
=
np
.
arange
(
-
10.5
,
10.6
,
1.
)
# create fig and subplot axes
fig
,
axes
=
plt
.
subplots
(
2
,
1
,
sharex
=
True
,
sharey
=
True
,
figsize
=
(
6
,
12
))
axes
=
axes
.
flatten
()
cbar_labs
=
[
"
°C
"
,
"
K
"
]
for
t
in
np
.
arange
(
2
):
m
=
Basemap
(
projection
=
'
cyl
'
,
llcrnrlat
=
np
.
min
(
lat
),
urcrnrlat
=
np
.
max
(
lat
),
llcrnrlon
=
np
.
min
(
lon
),
urcrnrlon
=
np
.
max
(
lon
),
resolution
=
'
l
'
,
ax
=
axes
[
t
])
m
.
drawcoastlines
()
x
,
y
=
m
(
lons
,
lats
)
lat_lab
=
[
1
,
0
,
0
,
0
]
axes
[
t
].
set_ylabel
(
u
'
Latitude
'
,
labelpad
=
32
)
lon_lab
=
list
(
np
.
zeros
(
4
))
if
t
==
1
:
lon_lab
=
[
0
,
0
,
0
,
1
]
axes
[
t
].
set_xlabel
(
u
'
Longitude
'
,
labelpad
=
17
)
m
.
drawmapboundary
()
m
.
drawparallels
(
np
.
arange
(
0
,
90
,
5
),
labels
=
lat_lab
,
xoffset
=
0.5
)
m
.
drawmeridians
(
np
.
arange
(
5
,
355
,
10
),
labels
=
lon_lab
,
yoffset
=
0.5
)
if
t
==
0
:
cs
=
m
.
contourf
(
x
,
y
,
data
.
isel
(
time_forecast
=
fcst_hour
)
-
273.15
,
clevs
,
cmap
=
plt
.
get_cmap
(
"
jet
"
),
ax
=
axes
[
t
])
cbar_ticks
=
None
elif
t
==
1
:
cs
=
m
.
contourf
(
x
,
y
,
data
.
isel
(
time_forecast
=
fcst_hour
)
-
data_ref
.
isel
(
time_forecast
=
fcst_hour
),
clevs_diff
,
cmap
=
plt
.
get_cmap
(
"
PuOr
"
),
ax
=
axes
[
t
])
cbar_ticks
=
list
(
np
.
arange
(
-
10.5
,
-
2.
,
2.
))
+
[
-
0.5
,
0.5
]
+
list
(
np
.
arange
(
2.5
,
10.6
,
2.
))
print
(
cbar_ticks
)
# add colorbar.
pos
=
axes
[
t
].
get_position
()
cbar_ax
=
fig
.
add_axes
([
0.95
,
pos
.
y0
+
0.08
*
(
t
*
2
-
1
),
0.02
,
pos
.
y1
-
pos
.
y0
])
cbar
=
fig
.
colorbar
(
cs
,
cax
=
cbar_ax
,
orientation
=
"
vertical
"
,
ticks
=
cbar_ticks
)
cbar
.
set_label
(
cbar_labs
[
t
])
# save to disk
#plt.show()
#plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=-0.5, wspace=0.05)
plt
.
subplots_adjust
(
hspace
=-
0.5
)
#plt.tight_layout()
plt
.
savefig
(
plt_fname
,
bbox_inches
=
"
tight
"
)
plt
.
close
()
def
main
(
args
):
parser
=
ArgumentParser
()
# add optional arguments which may be passed
parser
.
add_argument
(
"
-fname
"
,
"
--filename
"
,
dest
=
"
filename
"
,
type
=
str
,
help
=
"
The path to the netCDF-file from which the plot data is retrieved.
"
)
parser
.
add_argument
(
"
-fhour
"
,
"
--forecast_hour
"
,
dest
=
"
forecast_hour
"
,
type
=
int
,
help
=
"
The forecast hour/lead time for which the plot should be created
"
)
args
=
parser
.
parse_args
()
filename
=
args
.
filename
fhh
=
args
.
forecast_hour
if
os
.
path
.
isfile
(
filename
):
raise
FileNotFoundError
(
"
Could not find the indictaed netCDF-file
'
{0}
'"
.
format
(
filename
))
with
xr
.
open_dataset
(
filename
)
as
dfile
:
t2m_fcst
,
t2m_ref
=
dfile
[
"
2t_fcst
"
],
dfile
[
"
2t_ref
"
]
create_plot
(
t2m_fcst
,
t2m_ref
,
"
2t
"
,
fhh
,
"
{0}_fhh{1:d}.png
"
.
format
(
filename
[
0
:
-
3
],
fhh
))
if
__name__
==
"
__main__
"
:
main
(
sys
.
argv
[
1
:])
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment