Skip to content
Snippets Groups Projects
Select Git revision
  • 6fc55f0bf37fe02ea3a97d78e91b15a6fce5488b
  • master default
  • bing_issues#190_tf2
  • bing_tf2_convert
  • bing_issue#189_train_modular
  • simon_#172_integrate_weatherbench
  • develop
  • bing_issue#188_restructure_ambs
  • yan_issue#100_extract_prcp_data
  • bing_issue#170_data_preprocess_training_tf1
  • Gong2022_temperature_forecasts
  • bing_issue#186_clean_GMD1_tag
  • yan_issue#179_integrate_GZAWS_data_onfly
  • bing_issue#178_runscript_bug_postprocess
  • michael_issue#187_bugfix_setup_runscript_template
  • bing_issue#180_bugs_postprpocess_meta_postprocess
  • yan_issue#177_repo_for_CLGAN_gmd
  • bing_issue#176_integrate_weather_bench
  • michael_issue#181_eval_era5_forecasts
  • michael_issue#182_eval_subdomain
  • michael_issue#119_warmup_Horovod
  • bing_issue#160_test_zam347
  • ambs_v1
  • ambs_gmd_nowcasting_v1.0
  • GMD1
  • modular_booster_20210203
  • new_structure_20201004_v1.0
  • old_structure_20200930
28 results

ambs

  • Clone with SSH
  • Clone with HTTPS
  • Stochastic Adversarial Video Prediction

    Project Page(https://alexlee-gk.github.io/video_prediction/) Paper(https://arxiv.org/abs/1804.01523)

    TensorFlow implementation for stochastic adversarial video prediction. Given a sequence of initial frames, our model is able to predict future frames of various possible futures.

    Stochastic Adversarial Video Prediction,
    Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, Sergey Levine.
    arXiv preprint arXiv:1804.01523, 2018.

    Prerequisites

    • Linux or macOS
    • Python 2 or 3
    • CPU or NVIDIA GPU + CUDA CuDNN

    Getting Started

    Installation

    • Clone this repo:
    git clone -b master --single-branch https://github.com/alexlee-gk/video_prediction.git
    cd video_prediction
    • Install TensorFlow >= 1.5 and dependencies from http://tensorflow.org/
    • Install ffmpeg (optional, used to generate GIFs for visualization, e.g. in TensorBoard)
    • Install other dependencies
    pip install -r requirements.txt

    Use a Pre-trained Model

    • Download and preprocess a dataset (e.g. bair):
    bash ./data/download_and_preprocess_dataset.sh bair
    • Download a pre-trained model (e.g. savp) for that dataset:
    bash ./models/download_model.sh bair savp

    Model Training

    Datasets

    Download the datasets using the following script. These datasets are collected by other researchers. Please cite their papers if you use the data.

    • Download and preprocess the dataset.
    bash ./data/download_and_preprocess_dataset.sh dataset_name

    Models

    Citation

    If you find this useful for your research, please use the following.

    @article{lee2018savp,
      title={Stochastic Adversarial Video Prediction},
      author={Alex X. Lee and Richard Zhang and Frederik Ebert and Pieter Abbeel and Chelsea Finn and Sergey Levine},
      journal={arXiv preprint arXiv:1804.01523},
      year={2018}
    }