Skip to content
Snippets Groups Projects
Select Git revision
  • bing_issues#190_tf2
  • bing_tf2_convert
  • bing_issue#189_train_modular
  • simon_#172_integrate_weatherbench
  • develop
  • bing_issue#188_restructure_ambs
  • yan_issue#100_extract_prcp_data
  • bing_issue#170_data_preprocess_training_tf1
  • Gong2022_temperature_forecasts
  • bing_issue#186_clean_GMD1_tag
  • yan_issue#179_integrate_GZAWS_data_onfly
  • bing_issue#178_runscript_bug_postprocess
  • michael_issue#187_bugfix_setup_runscript_template
  • bing_issue#180_bugs_postprpocess_meta_postprocess
  • yan_issue#177_repo_for_CLGAN_gmd
  • bing_issue#176_integrate_weather_bench
  • michael_issue#181_eval_era5_forecasts
  • michael_issue#182_eval_subdomain
  • michael_issue#119_warmup_Horovod
  • bing_issue#160_test_zam347
  • ambs_v1
  • ambs_gmd_nowcasting_v1.0
  • GMD1
  • modular_booster_20210203
  • new_structure_20201004_v1.0
  • old_structure_20200930
26 results

ambs

  • Clone with SSH
  • Clone with HTTPS
  • user avatar
    Bing Gong authored
    b62933ba
    History

    Video Prediction by GAN

    This project aims to ado the GAN-based architectures, which original proposed by Project Page(https://alexlee-gk.github.io/video_prediction/) Paper(https://arxiv.org/abs/1804.01523), to predict temperature based on ERA5 data

    Getting Started

    Prerequisites

    • Linux or macOS
    • Python 3
    • CPU or NVIDIA GPU + CUDA CuDNN

    Installation

    • Clone this repo:
    git clone -b master https://gitlab.version.fz-juelich.de/gong1/video_prediction_savp.git
    cd Video_Prediction_SAVP
    • Install TensorFlow >= 1.9 and dependencies from http://tensorflow.org/
    • Install ffmpeg (optional, used to generate GIFs for visualization, e.g. in TensorBoard)
    • Install other dependencies
    pip install -r requirements.txt

    Miscellaneous installation considerations

    • In python >= 3.6, make sure to add the root directory to the PYTHONPATH, e.g. export PYTHONPATH=path/to/video_prediction.
    • For the best speed and experimental results, we recommend using cudnn version 7.3.0.29 and any tensorflow version >= 1.9 and <= 1.12. The final training loss is worse when using cudnn versions 7.3.1.20 or 7.4.1.5, compared to when using versions 7.3.0.29 and below.
    • In macOS, make sure that bash >= 4.0 is used (needed for associative arrays in download_model.sh script).

    Download data

    • Download the ERA5 data (.hkl) from the output of DataPreprocess in the Workflow project
    bash data/download_and_preprocess_dataset_era5.sh --data era5 --input_dir /splits --output_dir  data/era5