Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Merge requests
!288
Resolve "histogram of inputs and targets"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "histogram of inputs and targets"
lukas_issue299_feat_histogram_plots
into
develop
Overview
0
Commits
6
Pipelines
7
Changes
3
Merged
Ghost User
requested to merge
lukas_issue299_feat_histogram_plots
into
develop
4 years ago
Overview
0
Commits
6
Pipelines
7
Changes
2
Expand
Closes
#299 (closed)
Edited
4 years ago
by
Ghost User
0
0
Merge request reports
Compare
version 1
version 4
0bc63e8f
4 years ago
version 3
03ef6301
4 years ago
version 2
6f02e87b
4 years ago
version 1
1d23deff
4 years ago
develop (base)
and
version 2
latest version
e4dce9fb
6 commits,
4 years ago
version 4
0bc63e8f
5 commits,
4 years ago
version 3
03ef6301
4 commits,
4 years ago
version 2
6f02e87b
3 commits,
4 years ago
version 1
1d23deff
2 commits,
4 years ago
Show latest version
2 files
+
75
−
36
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
2
Search (e.g. *.vue) (Ctrl+P)
mlair/plotting/data_insight_plotting.py
+
73
−
34
Options
@@ -446,51 +446,90 @@ class PlotAvailabilityHistogram(AbstractPlotClass): # pragma: no cover
class
PlotDataHistogram
(
AbstractPlotClass
):
# pragma: no cover
def
__init__
(
self
,
generator
:
Dict
[
str
,
DataCollection
],
plot_folder
:
str
=
"
.
"
,
plot_name
=
"
histogram
"
,
def
__init__
(
self
,
generator
s
:
Dict
[
str
,
DataCollection
],
plot_folder
:
str
=
"
.
"
,
plot_name
=
"
histogram
"
,
variables_dim
=
"
variables
"
,
time_dim
=
"
datetime
"
,
window_dim
=
"
window
"
):
super
().
__init__
(
plot_folder
,
plot_name
)
self
.
variables_dim
=
variables_dim
self
.
time_dim
=
time_dim
self
.
window_dim
=
window_dim
self
.
inputs
=
to_list
(
generator
[
0
].
get_X
(
as_numpy
=
False
)[
0
].
coords
[
self
.
variables_dim
].
values
.
tolist
())
self
.
targets
=
to_list
(
generator
[
0
].
get_Y
(
as_numpy
=
False
).
coords
[
self
.
variables_dim
].
values
.
tolist
())
# normalized versions
self
.
_calculate_hist
(
generator
,
self
.
inputs
,
input_data
=
True
)
self
.
_plot
(
add_name
=
"
input
"
)
self
.
_calculate_hist
(
generator
,
self
.
targets
,
input_data
=
False
)
self
.
_plot
(
add_name
=
"
target
"
)
def
_calculate_hist
(
self
,
generator
,
variables
,
input_data
=
True
):
bins
=
{}
n_bins
=
100
interval_width
=
None
bin_edges
=
None
f
=
lambda
x
:
x
.
get_X
(
as_numpy
=
False
)[
0
]
if
input_data
is
True
else
x
.
get_Y
(
as_numpy
=
False
)
for
gen
in
generator
:
w
=
min
(
abs
(
f
(
gen
).
coords
[
self
.
window_dim
].
values
))
data
=
f
(
gen
).
sel
({
self
.
window_dim
:
w
})
res
,
interval_width
,
bin_edges
=
f_proc_hist
(
data
,
variables
,
n_bins
,
self
.
variables_dim
)
for
var
in
variables
:
n_var
=
bins
.
get
(
var
,
np
.
zeros
(
n_bins
))
n_var
+=
res
[
var
]
bins
[
var
]
=
n_var
self
.
bins
=
bins
self
.
interval_width
=
interval_width
self
.
bin_edges
=
bin_edges
def
_plot
(
self
,
add_name
):
plot_path
=
os
.
path
.
join
(
os
.
path
.
abspath
(
self
.
plot_folder
),
f
"
{
self
.
plot_name
}
_
{
add_name
}
.pdf
"
)
self
.
inputs
,
self
.
targets
=
self
.
_get_inputs_targets
(
generators
,
self
.
variables_dim
)
self
.
bins
=
{}
# input plots
self
.
_calculate_hist
(
generators
,
self
.
inputs
,
input_data
=
True
)
for
subset
in
generators
.
keys
():
self
.
_plot
(
add_name
=
"
input
"
,
subset
=
subset
)
self
.
_plot_combined
(
add_name
=
"
input
"
)
# target plots
self
.
_calculate_hist
(
generators
,
self
.
targets
,
input_data
=
False
)
for
subset
in
generators
.
keys
():
self
.
_plot
(
add_name
=
"
target
"
,
subset
=
subset
)
self
.
_plot_combined
(
add_name
=
"
target
"
)
@staticmethod
def
_get_inputs_targets
(
gens
,
dim
):
k
=
list
(
gens
.
keys
())[
0
]
gen
=
gens
[
k
][
0
]
inputs
=
to_list
(
gen
.
get_X
(
as_numpy
=
False
)[
0
].
coords
[
dim
].
values
.
tolist
())
targets
=
to_list
(
gen
.
get_Y
(
as_numpy
=
False
).
coords
[
dim
].
values
.
tolist
())
return
inputs
,
targets
def
_calculate_hist
(
self
,
generators
,
variables
,
input_data
=
True
):
for
set_type
,
generator
in
generators
.
items
():
bins
=
{}
n_bins
=
100
interval_width
=
None
bin_edges
=
None
f
=
lambda
x
:
x
.
get_X
(
as_numpy
=
False
)[
0
]
if
input_data
is
True
else
x
.
get_Y
(
as_numpy
=
False
)
for
gen
in
generator
:
w
=
min
(
abs
(
f
(
gen
).
coords
[
self
.
window_dim
].
values
))
data
=
f
(
gen
).
sel
({
self
.
window_dim
:
w
})
res
,
interval_width
,
bin_edges
=
f_proc_hist
(
data
,
variables
,
n_bins
,
self
.
variables_dim
)
for
var
in
variables
:
n_var
=
bins
.
get
(
var
,
np
.
zeros
(
n_bins
))
n_var
+=
res
[
var
]
bins
[
var
]
=
n_var
self
.
bins
[
set_type
]
=
bins
self
.
interval_width
=
interval_width
self
.
bin_edges
=
bin_edges
def
_plot
(
self
,
add_name
,
subset
):
plot_path
=
os
.
path
.
join
(
os
.
path
.
abspath
(
self
.
plot_folder
),
f
"
{
self
.
plot_name
}
_
{
subset
}
_
{
add_name
}
.pdf
"
)
pdf_pages
=
matplotlib
.
backends
.
backend_pdf
.
PdfPages
(
plot_path
)
for
var
in
self
.
bins
.
keys
():
bins
=
self
.
bins
[
subset
]
colors
=
self
.
get_dataset_colors
()
for
var
in
bins
.
keys
():
fig
,
ax
=
plt
.
subplots
()
hist_var
=
self
.
bins
[
var
]
hist_var
=
bins
[
var
]
n_var
=
sum
(
hist_var
)
weights
=
hist_var
/
(
self
.
interval_width
*
n_var
)
ax
.
hist
(
self
.
bin_edges
[:
-
1
],
self
.
bin_edges
,
weights
=
weights
)
ax
.
hist
(
self
.
bin_edges
[:
-
1
],
self
.
bin_edges
,
weights
=
weights
,
color
=
colors
[
subset
])
ax
.
set_ylabel
(
"
probability density
"
)
ax
.
set_xlabel
(
f
"
values (
{
subset
}
)
"
)
ax
.
set_title
(
f
"
Histogram (
{
var
}
, n=
{
int
(
n_var
)
}
)
"
)
pdf_pages
.
savefig
()
# close all open figures / plots
pdf_pages
.
close
()
plt
.
close
(
'
all
'
)
def
_plot_combined
(
self
,
add_name
):
plot_path
=
os
.
path
.
join
(
os
.
path
.
abspath
(
self
.
plot_folder
),
f
"
{
self
.
plot_name
}
_
{
add_name
}
.pdf
"
)
pdf_pages
=
matplotlib
.
backends
.
backend_pdf
.
PdfPages
(
plot_path
)
variables
=
self
.
bins
[
list
(
self
.
bins
.
keys
())[
0
]].
keys
()
colors
=
self
.
get_dataset_colors
()
for
var
in
variables
:
fig
,
ax
=
plt
.
subplots
()
for
subset
in
self
.
bins
.
keys
():
hist_var
=
self
.
bins
[
subset
][
var
]
n_var
=
sum
(
hist_var
)
weights
=
hist_var
/
(
self
.
interval_width
*
n_var
)
ax
.
plot
(
self
.
bin_edges
[:
-
1
]
+
0.5
*
self
.
interval_width
,
weights
,
label
=
f
"
{
subset
}
"
,
c
=
colors
[
subset
])
ax
.
set_ylabel
(
"
probability density
"
)
ax
.
set_xlabel
(
f
"
{
var
}
"
)
ax
.
set_title
(
f
"
Histogram (n=
{
int
(
n_var
)
}
)
"
)
ax
.
legend
(
loc
=
"
upper right
"
)
ax
.
set_title
(
f
"
Histogram
"
)
pdf_pages
.
savefig
()
# close all open figures / plots
pdf_pages
.
close
()
Loading