Skip to content
Snippets Groups Projects

Resolve "robust apriori estimate for short timeseries"

Files
2
@@ -178,8 +178,8 @@ class TestClimateFIRFilter:
obj = object.__new__(ClimateFIRFilter)
sel_opts = {time_dim: slice("2010-05", "2010-08")}
res = obj.create_monthly_mean(xr_array_long, time_dim, sel_opts=sel_opts)
assert res.dropna(time_dim)[f"{time_dim}.month"].min() == 5
assert res.dropna(time_dim)[f"{time_dim}.month"].max() == 8
assert res.dropna(time_dim)[f"{time_dim}.month"].min() == 1
assert res.dropna(time_dim)[f"{time_dim}.month"].max() == 12
mean_jun_2010 = xr_array_long[xr_array_long[f"{time_dim}.month"] == 6].sel({time_dim: "2010"}).mean()
assert res.sel({time_dim: "2010-06-15T00:00:00"}) == mean_jun_2010
@@ -226,8 +226,8 @@ class TestClimateFIRFilter:
xr_array_long = xr_array_long.resample({time_dim: "1H"}).interpolate()
sel_opts = {time_dim: slice("2010-05", "2010-08")}
res = obj.create_seasonal_hourly_mean(xr_array_long, time_dim, sel_opts=sel_opts)
assert res.dropna(time_dim)[f"{time_dim}.month"].min() == 5
assert res.dropna(time_dim)[f"{time_dim}.month"].max() == 8
assert res.dropna(time_dim)[f"{time_dim}.month"].min() == 1
assert res.dropna(time_dim)[f"{time_dim}.month"].max() == 12
def test_create_unity_array(self, xr_array, time_dim):
obj = object.__new__(ClimateFIRFilter)
Loading