Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "title-slide",
"slideshow": {
"id": "title-slide",
"slide_type": "slide"
}
},
"source": [
"# *Introduction to* Data Analysis and Plotting with Pandas\n",
"## JSC Tutorial\n",
"\n",
"Andreas Herten, Forschungszentrum Jülich, 26 February 2019"
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## My Motivation\n",
"\n",
"* I like Python\n",
"* I like plotting data\n",
"* I like sharing\n",
"* I think Pandas is awesome and you should use it too"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Tutorial Setup\n",
"\n",
"* 60 minutes (we might do this again for some advanced stuff if you want to)\n",
"* Alternating between lecture and hands-on\n",
"* Direct feedback via https://www.polleverywhere.com/"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"* Please open Jupyter Notebook of this session\n",
" - … either on your **local machine** (which has Pandas) \n",
" Download here\n",
" - … or on the **JSC Jupyter service** at https://jupyter-jsc.fz-juelich.de/\n",
" - Either `pip install --user pandas seaborn` once in a shell and `cp $PROJECT_cjsc/herten1/pandas/notebook.ipynb ~/`\n",
" - Or \n",
" 1. `ln -s $PROJECT_cjsc/herten1/pandas ~/.local/share/jupyter/kernels/` and \n",
" 2. `cp $PROJECT_cjsc/herten1/pandas/notebook-with-kernel.ipynb ~/`"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"<!-- .slide: class=\"slide-with-special-img-positionning\" -->\n",
"\n",
"<img style=\"float: right; max-width: 200px;\" width=\"200px\" src=\"img/adorable-animal-animal-photography-1661535.jpg\" />\n",
"\n",
"* Python package\n",
"* For data analysis\n",
"* With data structures (multi-dimensional table; time series), operations\n",
"* From »**Pan**el **Da**ta« (multi-dimensional time series in economics)\n",
"* Since 2008\n",
"* https://pandas.pydata.org/\n",
"* Install [via PyPI](https://pypi.org/project/pandas/): `pip install pandas`"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Pandas and Friends\n",
"\n",
"* Pandas works great together with other established Python tools\n",
" * [Jupyter Notebooks](https://jupyter.org/)\n",
" * Plotting with [`matplotlib`](https://matplotlib.org/)\n",
" * Modelling with [`statsmodels`](https://www.statsmodels.org/stable/index.html), [`scikit-learn`](https://scikit-learn.org/)\n",
" * Nicer plots with [`seaborn`](https://seaborn.pydata.org/), [`altair`](https://altair-viz.github.io/)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}