Skip to content
Snippets Groups Projects
Commit f2139653 authored by Fahad Khalid's avatar Fahad Khalid
Browse files

For PyTorch samples (with and without Horovod), the manner in which...

For PyTorch samples (with and without Horovod), the manner in which pre-downloaded datasets are loaded has been changed a bit to comply with the versions of torch and torchvision installed in stage 2019a.
parent a4af4d26
Branches
No related tags found
No related merge requests found
...@@ -57,7 +57,7 @@ if args.cuda: ...@@ -57,7 +57,7 @@ if args.cuda:
dataset_file = os.path.join(data_dir, data_file) dataset_file = os.path.join(data_dir, data_file)
# [HPCNS] Dataset filename for this rank # [HPCNS] Dataset filename for this rank
dataset_for_rank = 'MNIST-data-%d' % hvd.rank() dataset_for_rank = 'MNIST'
# [HPCNS] If the path already exists, remove it # [HPCNS] If the path already exists, remove it
if os.path.exists(dataset_for_rank): if os.path.exists(dataset_for_rank):
...@@ -68,7 +68,7 @@ shutil.copytree(dataset_file, dataset_for_rank) ...@@ -68,7 +68,7 @@ shutil.copytree(dataset_file, dataset_for_rank)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_dataset = \ train_dataset = \
datasets.MNIST(dataset_for_rank, train=True, download=False, datasets.MNIST('', train=True, download=False,
transform=transforms.Compose([ transform=transforms.Compose([
transforms.ToTensor(), transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) transforms.Normalize((0.1307,), (0.3081,))
...@@ -80,7 +80,7 @@ train_loader = torch.utils.data.DataLoader( ...@@ -80,7 +80,7 @@ train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs) train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
test_dataset = \ test_dataset = \
datasets.MNIST(dataset_for_rank, train=False, download=False, transform=transforms.Compose([ datasets.MNIST('', train=False, download=False, transform=transforms.Compose([
transforms.ToTensor(), transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) transforms.Normalize((0.1307,), (0.3081,))
])) ]))
......
...@@ -108,7 +108,7 @@ def main(): ...@@ -108,7 +108,7 @@ def main():
dataset_file = os.path.join(data_dir, data_file) dataset_file = os.path.join(data_dir, data_file)
# [HPCNS] A copy of the dataset in the current directory # [HPCNS] A copy of the dataset in the current directory
dataset_copy = 'MNIST-data' dataset_copy = 'MNIST'
# [HPCNS] If the path already exists, remove it # [HPCNS] If the path already exists, remove it
if os.path.exists(dataset_copy): if os.path.exists(dataset_copy):
...@@ -120,14 +120,14 @@ def main(): ...@@ -120,14 +120,14 @@ def main():
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader( train_loader = torch.utils.data.DataLoader(
datasets.MNIST(dataset_copy, train=True, download=False, datasets.MNIST('', train=True, download=False,
transform=transforms.Compose([ transform=transforms.Compose([
transforms.ToTensor(), transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) transforms.Normalize((0.1307,), (0.3081,))
])), ])),
batch_size=args.batch_size, shuffle=True, **kwargs) batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader( test_loader = torch.utils.data.DataLoader(
datasets.MNIST(dataset_copy, train=False, download=False, transform=transforms.Compose([ datasets.MNIST('', train=False, download=False, transform=transforms.Compose([
transforms.ToTensor(), transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) transforms.Normalize((0.1307,), (0.3081,))
])), ])),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment