Skip to content
Snippets Groups Projects
Commit 467aa632 authored by liukang's avatar liukang
Browse files

modified the scripts to generate only two figures in folder figure of every...

modified the scripts to generate only two figures in folder figure of every factor-*,and corrected some scripts to avoid divided by zero
parent 0dd76e76
Branches
No related tags found
No related merge requests found
Showing with 20 additions and 55 deletions
...@@ -12,15 +12,16 @@ import os ...@@ -12,15 +12,16 @@ import os
Factors=glob.glob('factor-*') Factors=glob.glob('factor-*')
for factor in Factors: for factor in Factors:
if factor == 'factor-stepsize': #if factor == 'factor-stepsize':
pass #pass
else: #else:
os.chdir(factor) os.chdir(factor)
print('os.getcwd()') print('os.getcwd()')
Scripts=glob.glob('*.py') print(factor)
for script in Scripts: #Scripts=glob.glob('*.py')
#for script in Scripts:
subprocess.call(["python", "%s"%script,]) #subprocess.call(["python", "%s"%script,])
os.chdir('..') os.chdir('..')
...@@ -186,19 +186,6 @@ for model in Model: ...@@ -186,19 +186,6 @@ for model in Model:
print(C) print(C)
BIG_C[j]=C BIG_C[j]=C
j=j+1 j=j+1
plt.figure()
plt.plot(W,MeanNmax)
plt.savefig('inflowrate-n')
plt.figure()
plt.plot(W,C,'-or')
plt.savefig('inflowrate-nt')
print('now leave'+model)
os.chdir('..') os.chdir('..')
std1=np.std(BIG_meanNmax) std1=np.std(BIG_meanNmax)
... ...
......
...@@ -158,21 +158,7 @@ for model in Model: ...@@ -158,21 +158,7 @@ for model in Model:
BIG_C[j]=C BIG_C[j]=C
j=j+1 j=j+1
plt.figure()
plt.plot(W,MeanNmax)
plt.savefig('W-N',dpi=300)
plt.figure()
plt.grid()
plt.plot(W,C)
plt.savefig('W-Nt',dpi=300)
#plt.savefig('W-N/T')
print('now leave'+model) print('now leave'+model)
os.chdir('../..') os.chdir('../..')
std1=np.std(BIG_meanNmax) std1=np.std(BIG_meanNmax)
... ...
......
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
...@@ -110,7 +110,7 @@ for model in Model: ...@@ -110,7 +110,7 @@ for model in Model:
else: else:
Nmax_p_m0.append(np.loadtxt(log)[-1][-1]) Nmax_p_m0.append(np.loadtxt(log)[-1][-1])
meanNmax_m0[0]=sum(Nmax_p_m0)/len(Nmax_p_m0) meanNmax_m0[0]=sum(Nmax_p_m0)/len(Nmax_p_m0)
Timespan_p_m0.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_p_m0.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m0[0]=sum(Timespan_p_m0)/len(Timespan_p_m0) meanTimespan_m0[0]=sum(Timespan_p_m0)/len(Timespan_p_m0)
c_m0[0]=(meanNmax_m0[0]/meanTimespan_m0[0]) c_m0[0]=(meanNmax_m0[0]/meanTimespan_m0[0])
...@@ -125,7 +125,7 @@ for model in Model: ...@@ -125,7 +125,7 @@ for model in Model:
else: else:
Nmax_s_m0.append(np.loadtxt(log)[-1][-1]) Nmax_s_m0.append(np.loadtxt(log)[-1][-1])
meanNmax_m0[1]=sum(Nmax_s_m0)/len(Nmax_s_m0) meanNmax_m0[1]=sum(Nmax_s_m0)/len(Nmax_s_m0)
Timespan_s_m0.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_s_m0.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m0[1]=sum(Timespan_s_m0)/len(Timespan_s_m0) meanTimespan_m0[1]=sum(Timespan_s_m0)/len(Timespan_s_m0)
c_m0[1]=(meanNmax_m0[1]/meanTimespan_m0[1]) c_m0[1]=(meanNmax_m0[1]/meanTimespan_m0[1])
os.chdir('../..') os.chdir('../..')
...@@ -146,7 +146,7 @@ for model in Model: ...@@ -146,7 +146,7 @@ for model in Model:
else: else:
Nmax_p_m1.append(np.loadtxt(log)[-1][-1]) Nmax_p_m1.append(np.loadtxt(log)[-1][-1])
meanNmax_m1[0]=sum(Nmax_p_m1)/len(Nmax_p_m1) meanNmax_m1[0]=sum(Nmax_p_m1)/len(Nmax_p_m1)
Timespan_p_m1.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_p_m1.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m1[0]=sum(Timespan_p_m1)/len(Timespan_p_m1) meanTimespan_m1[0]=sum(Timespan_p_m1)/len(Timespan_p_m1)
c_m1[0]=(meanNmax_m1[0]/meanTimespan_m1[0]) c_m1[0]=(meanNmax_m1[0]/meanTimespan_m1[0])
...@@ -161,7 +161,7 @@ for model in Model: ...@@ -161,7 +161,7 @@ for model in Model:
else: else:
Nmax_s_m1.append(np.loadtxt(log)[-1][-1]) Nmax_s_m1.append(np.loadtxt(log)[-1][-1])
meanNmax_m1[1]=sum(Nmax_s_m1)/len(Nmax_s_m1) meanNmax_m1[1]=sum(Nmax_s_m1)/len(Nmax_s_m1)
Timespan_s_m1.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_s_m1.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m1[1]=sum(Timespan_s_m1)/len(Timespan_s_m1) meanTimespan_m1[1]=sum(Timespan_s_m1)/len(Timespan_s_m1)
c_m1[1]=(meanNmax_m1[1]/meanTimespan_m1[1]) c_m1[1]=(meanNmax_m1[1]/meanTimespan_m1[1])
os.chdir('../..') os.chdir('../..')
...@@ -181,7 +181,7 @@ for model in Model: ...@@ -181,7 +181,7 @@ for model in Model:
else: else:
Nmax_p_m2.append(np.loadtxt(log)[-1][-1]) Nmax_p_m2.append(np.loadtxt(log)[-1][-1])
meanNmax_m2[0]=sum(Nmax_p_m2)/len(Nmax_p_m2) meanNmax_m2[0]=sum(Nmax_p_m2)/len(Nmax_p_m2)
Timespan_p_m2.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_p_m2.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m2[0]=sum(Timespan_p_m2)/len(Timespan_p_m2) meanTimespan_m2[0]=sum(Timespan_p_m2)/len(Timespan_p_m2)
c_m2[0]=(meanNmax_m2[0]/meanTimespan_m2[0]) c_m2[0]=(meanNmax_m2[0]/meanTimespan_m2[0])
...@@ -196,7 +196,7 @@ for model in Model: ...@@ -196,7 +196,7 @@ for model in Model:
else: else:
Nmax_s_m2.append(np.loadtxt(log)[-1][-1]) Nmax_s_m2.append(np.loadtxt(log)[-1][-1])
meanNmax_m2[1]=sum(Nmax_s_m2)/len(Nmax_s_m2) meanNmax_m2[1]=sum(Nmax_s_m2)/len(Nmax_s_m2)
Timespan_s_m2.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_s_m2.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m2[1]=sum(Timespan_s_m2)/len(Timespan_s_m2) meanTimespan_m2[1]=sum(Timespan_s_m2)/len(Timespan_s_m2)
c_m2[1]=(meanNmax_m2[1]/meanTimespan_m2[1]) c_m2[1]=(meanNmax_m2[1]/meanTimespan_m2[1])
os.chdir('../..') os.chdir('../..')
...@@ -217,7 +217,7 @@ for model in Model: ...@@ -217,7 +217,7 @@ for model in Model:
else: else:
Nmax_p_m3.append(np.loadtxt(log)[-1][-1]) Nmax_p_m3.append(np.loadtxt(log)[-1][-1])
meanNmax_m3[0]=sum(Nmax_p_m3)/len(Nmax_p_m3) meanNmax_m3[0]=sum(Nmax_p_m3)/len(Nmax_p_m3)
Timespan_p_m3.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_p_m3.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m3[0]=sum(Timespan_p_m3)/len(Timespan_p_m3) meanTimespan_m3[0]=sum(Timespan_p_m3)/len(Timespan_p_m3)
c_m3[0]=(meanNmax_m3[0]/meanTimespan_m3[0]) c_m3[0]=(meanNmax_m3[0]/meanTimespan_m3[0])
...@@ -232,7 +232,7 @@ for model in Model: ...@@ -232,7 +232,7 @@ for model in Model:
else: else:
Nmax_s_m3.append(np.loadtxt(log)[-1][-1]) Nmax_s_m3.append(np.loadtxt(log)[-1][-1])
meanNmax_m3[1]=sum(Nmax_s_m3)/len(Nmax_s_m3) meanNmax_m3[1]=sum(Nmax_s_m3)/len(Nmax_s_m3)
Timespan_s_m3.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_s_m3.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m3[1]=sum(Timespan_s_m3)/len(Timespan_s_m3) meanTimespan_m3[1]=sum(Timespan_s_m3)/len(Timespan_s_m3)
c_m3[1]=(meanNmax_m3[1]/meanTimespan_m3[1]) c_m3[1]=(meanNmax_m3[1]/meanTimespan_m3[1])
os.chdir('../..') os.chdir('../..')
...@@ -252,7 +252,7 @@ for model in Model: ...@@ -252,7 +252,7 @@ for model in Model:
else: else:
Nmax_p_m4.append(np.loadtxt(log)[-1][-1]) Nmax_p_m4.append(np.loadtxt(log)[-1][-1])
meanNmax_m4[0]=sum(Nmax_p_m4)/len(Nmax_p_m4) meanNmax_m4[0]=sum(Nmax_p_m4)/len(Nmax_p_m4)
Timespan_p_m4.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_p_m4.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m4[0]=sum(Timespan_p_m4)/len(Timespan_p_m4) meanTimespan_m4[0]=sum(Timespan_p_m4)/len(Timespan_p_m4)
c_m4[0]=(meanNmax_m4[0]/meanTimespan_m4[0]) c_m4[0]=(meanNmax_m4[0]/meanTimespan_m4[0])
...@@ -267,7 +267,7 @@ for model in Model: ...@@ -267,7 +267,7 @@ for model in Model:
else: else:
Nmax_s_m4.append(np.loadtxt(log)[-1][-1]) Nmax_s_m4.append(np.loadtxt(log)[-1][-1])
meanNmax_m4[1]=sum(Nmax_s_m4)/len(Nmax_s_m4) meanNmax_m4[1]=sum(Nmax_s_m4)/len(Nmax_s_m4)
Timespan_s_m4.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[1][1]) Timespan_s_m4.append(np.loadtxt(log)[-1][1]-np.loadtxt(log)[0][1])
meanTimespan_m4[1]=sum(Timespan_s_m4)/len(Timespan_s_m4) meanTimespan_m4[1]=sum(Timespan_s_m4)/len(Timespan_s_m4)
c_m4[1]=(meanNmax_m4[1]/meanTimespan_m4[1]) c_m4[1]=(meanNmax_m4[1]/meanTimespan_m4[1])
os.chdir('../..') os.chdir('../..')
... ...
......
...@@ -174,15 +174,6 @@ for model in Model: ...@@ -174,15 +174,6 @@ for model in Model:
BIG_C[j]=C BIG_C[j]=C
print(C) print(C)
j=j+1 j=j+1
plt.figure()
plt.plot(W,MeanNmax)
plt.savefig('W-N')
plt.figure()
plt.plot(W,C)
plt.savefig('W-NT')
print('now leave'+model) print('now leave'+model)
... ...
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment