Skip to content
Snippets Groups Projects
Select Git revision
  • 105-memory-leak-in-pm-message-envelope-handling
  • devel default
  • 107-compilation-error-when-building-maestro-core-on-m1-apple-processors
  • 108-implement-cpu-id-query-for-apple-m1-hardware
  • 58-scripting-interface-to-maestro-core
  • 101-need-ci-test-using-installed-maestro
  • 57-sphinx-documentation
  • 104-permit-disabling-memory-pool
  • 103-liberl-installation-issue-on-devel
  • 94-maestro-rdma-transport-ignores-max_msg_size-2
  • main protected
  • 102-possible-race-in-check_pm_redundant_interlock-test
  • 97-check-if-shm-provider-can-be-enabled-after-libfabric-1-14-is-in-our-tree-2
  • 100-include-maestro-attributes-h-cannot-include-mamba-header-from-deps-path
  • 97-check-if-shm-provider-can-be-enabled-after-libfabric-1-14-is-in-our-tree
  • 17-job-failed-282354-needs-update-of-mio-interface-and-build-rules
  • 96-test-libfabric-update-to-1-13-or-1-14
  • feature/stop-telemetry-after-all-left
  • 94-maestro-rdma-transport-ignores-max_msg_size
  • 93-improve-performance-of-mstro_attribute_val_cmp_str
  • v0.3_rc1
  • maestro_d65
  • d65_experiments_20211113
  • v0.2
  • v0.2_rc1
  • d3.3
  • d3.3-review
  • d5.5
  • d5.5-review
  • v0.1
  • d3.2
  • d3.2-draft
  • v0.0
33 results

README.md

Blame
  • generate_era5.sh 1.28 KiB
    #!/bin/bash -x
    #SBATCH --account=deepacf
    #SBATCH --nodes=1
    #SBATCH --ntasks=1
    ##SBATCH --ntasks-per-node=1
    #SBATCH --cpus-per-task=1
    #SBATCH --output=generate_era5-out.%j
    #SBATCH --error=generate_era5-err.%j
    #SBATCH --time=00:20:00
    #SBATCH --gres=gpu:1
    #SBATCH --partition=develgpus
    #SBATCH --mail-type=ALL
    #SBATCH --mail-user=b.gong@fz-juelich.de
    ##jutil env activate -p cjjsc42
    
    
    module purge
    module load GCC/8.3.0
    module load ParaStationMPI/5.2.2-1
    module load TensorFlow/1.13.1-GPU-Python-3.6.8
    module load netcdf4-python/1.5.0.1-Python-3.6.8
    module load h5py/2.9.0-Python-3.6.8
    
    
    python -u ../scripts/generate_transfer_learning_finetune.py \
    --input_dir /p/scratch/deepacf/video_prediction_shared_folder/preprocessedData/era5-Y2017M01to12-64x64-50d00N11d50E-T_T_T/tfrecords/  \
    --dataset_hparams sequence_length=20 --checkpoint  /p/scratch/deepacf/video_prediction_shared_folder/models/era5-Y2017M01to12-64x64-50d00N11d50E-T_T_T/ours_gan \
    --mode test --results_dir /p/scratch/deepacf/video_prediction_shared_folder/results/era5-Y2017M01to12-64x64-50d00N11d50E-T_T_T \
    --batch_size 4 --dataset era5   > generate_era5-out.out
    
    #srun  python scripts/train.py --input_dir data/era5 --dataset era5  --model savp --model_hparams_dict hparams/kth/ours_savp/model_hparams.json --output_dir logs/era5/ours_savp