Skip to content
Snippets Groups Projects
Commit 4752abae authored by Dirk Pleiter's avatar Dirk Pleiter
Browse files

First update for 2022 school

parent b2037844
No related branches found
No related tags found
No related merge requests found
...@@ -2,4 +2,5 @@ ...@@ -2,4 +2,5 @@
This repository contains documentation about the hardware that is being used during the summer school: This repository contains documentation about the hardware that is being used during the summer school:
- [Dardel Thin Compute Nodes](dardel/dardel-thin-cn.md)
- [Tegner Thin Nodes](tegner/tegner-thin-node.md) - [Tegner Thin Nodes](tegner/tegner-thin-node.md)
# Dardel Thin Compute Nodes
The Dardel Thin Compute Nodes comprise
- 2x AMD EPYC 7742 CPUs with 256 GByte main memory attached
- 1x Slingshot network card
## CPU and host memory
The AMD EPYC 7742 CPU belongs to the Rome generation and features features Zen 2 cores. The following picture provides an overview of the micro-architecture of the Zen 2 cores (source: [WikiChip](https://en.wikichip.org/wiki/amd/microarchitectures/zen_2)):
<img src="zen_2_core_diagram.svg" alt="Haswell" width="500px"/>
The following table documents key hardware parameters of the node:
Parameter | Value
----------| -----
Number of sockets | 2
Number of cores per socket | 12
SIMD ISA | AVX2
FP64/cycle per core | 16
FP32/cycle per core | 32
Base frequency | 2.25 GHz
Boost frequency | 3.4 GHz
L1-I cache per core | 32 kiByte, 8-way set associative
L1-D cache per core | 32 kiByte, 8-way set associative
L2 cache per core | 512 kiByte, 8-way set associative
L3 cache per socket | 256 MiByte
Memory technology | DDR4
Memory capacity per node | 256 GiByte
Memory channels per socket | 8x64 bit
Memory data rate | 3200 MT/s
Memory bandwidth per socket | 204.8 GByte/s
For more information see [AMD's product page](https://www.amd.com/en/products/cpu/amd-epyc-7742)
\ No newline at end of file
dardel/zen_2_core_diagram.png

256 KiB

This diff is collapsed.
# Tegner Thin Nodes # Tegner Thin Nodes with K80 GPU
The Tegner Thin Nodes comprise The Tegner Thin Nodes with K80 GPU comprise
- 2x Intel E5-2690v3 CPUs with 512 GByte main memory attached - 2x Intel E5-2690v3 CPUs with 512 GByte main memory attached
- 1x NVIDIA Quadro K420 GPUs - 1x NVIDIA Tesla K80 GPU
- 1x Mellanox ConnectX-4 card (Infiniband EDR) - 1x Mellanox ConnectX-4 card (Infiniband EDR)
## CPU and host memory ## CPU and host memory
The Intel E5-2690v3 CPUs belongs to the Haswell generation. The following picture provides an overview of the micro-architecture of this kind of processors (source: [WikiChip](https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client))): The Intel E5-2690v3 CPU belongs to the Haswell generation. The following picture provides an overview of the micro-architecture of this kind of processors (source: [WikiChip](https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client))):
<img src="1380px-haswell_block_diagram.svg.png" alt="Haswell" width="400px"/> <img src="1380px-haswell_block_diagram.svg.png" alt="Haswell" width="400px"/>
The following table documents key hardware parameters of the CPU and the attached host memory: The following table documents key hardware parameters of the node:
Parameter | Value Parameter | Value
----------| ----- ----------| -----
...@@ -37,25 +37,27 @@ For more information see [Intel's product page](https://ark.intel.com/content/ww ...@@ -37,25 +37,27 @@ For more information see [Intel's product page](https://ark.intel.com/content/ww
## GPU and device memory ## GPU and device memory
The NVIDIA Quadro K420 GPU belongs to the Kepler generation. It is optimised for graphics applications (unlike other GPUs of that generation that target, in particular, HPC applications and feature, e.g., much higher memory bandwidth and more memory capacity). The following table documents key hardware parameters of this GPU and the attached device memory: The NVIDIA Tesla K80 GPU belongs to the Kepler generation. It is optimised for graphics applications (unlike other GPUs of that generation that target, in particular, HPC applications and feature, e.g., much higher memory bandwidth and more memory capacity). The following table documents key hardware parameters of this GPU and the attached device memory:
Parameter | Value Parameter | Value
----------| ----- ----------| -----
GPU type | GK107 GPU type | GK210
Number of SMX | 1 Number of SMs | 2x13
FP32/cycle per SMX | 384 FP32/cycle per SM | 384
FP64/cycle per SMX | 16 FP64/cycle per SM | 128
GPU clock | 876 MHz GPU base clock | 560 MHz
32-bit registers per SMX | 65536 32-bit registers per SM | 65536
L1 cache per SMX | 16 kiByte L1 cache per SM | 16 kiByte
L2 cache per device | 256 kiByte L2 cache per device | 1536 kiByte
Memory clock | 891 MHz Memory clock | 2500 MHz
Memory technology | DDR3 Memory technology | GDDR5
Memory capacity per device | 1 GiByte Memory capacity per board | 2x12 GiByte
Memory channels per device | 1x128 bit Memory bus width per board | 2x384 bit
Memory data rate | 1800 MT/s Memory bandwidth per board | 2x240 GByte/s
Memory bandwidth per socket | 29 GByte/s
Bus interface | 16x PCIe GEN2 Bus interface | 16x PCIe GEN2
Bus interface data rate | 10 GByte/s Bus interface data rate | 10 GByte/s
For more information see [NVIDIA's data sheet](https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/13720_DS_NV_Quadro_K420_Aug25_US_NV_HR.pdf) or the [GPU database at www.techpowerup.com](https://www.techpowerup.com/gpu-specs/quadro-k420.c2599). For more information see
\ No newline at end of file - [NVIDIA: Tesla K80 Data Sheet](https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/TeslaK80-datasheet.pdf)
- [NVIDIA: Tesla K80 Board Specification](https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/Tesla-K80-BoardSpec-07317-001-v05.pdf)
- [www.techpowerup.com: GPU database](https://www.techpowerup.com/gpu-specs/tesla-k80.c2616)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment