font-family:'PT Serif',Palatino,'Palatino Linotype',Times,'Times New Roman',serif;
line-height:1.33;
padding:1em;
margin:auto;
max-width:600px;
}
p.author{
display:inline;
}
p.author:after{
content:",";
}
.note{
background-color:#FFF9C4;
border-left:3pxsolid#FFEB3B;
padding-left:3px;
}
.git-hash{
display:block;
font-size:smaller;
color:gray;
text-align:center;
margin-top:2em;
font-style:italic;
}
.git-hashabbr{
font-family:monospace;
}
@mediaprint{
.no-print,.no-print*{
display:none!important;
}
}
header,section#main{
margin-bottom:6ex;
}
section#mainh1{
font-size:1.2em;
font-style:italic;
}
code{
background-color:#EEEEEE;
padding:3px;
}
.sidenote{
font-size:smaller;
}
.inactive{
text-decoration:line-through;
}
.active{
text-decoration:underlinedashed1.5px;
}
</style>
</head>
<body>
<header>
<h1>Data Analysis and Plotting in Python with Pandas</h1>
<h2>FZJ/JSC Training Course</h2>
<divclsas="sidenote">
<p>Wednesday, 23 October 2024, 9:00 - 13:00, <strong>online</strong></p>
<p>Pandas solves the full stack of data analysis in Python; reading-in of data, mangling and manipulation, analysis, and visualization (and much more, actually). It builds up on established Python packages and can be used interchangeably with them (like Numpy, matplotlib); it fits perfectly into the Jupyter Notebooks workflow of modern-day data analysis. 🐼</p>
<p>Setup: Lecture/hands-on sessions with prepared Jupyter Notebooks</p>
<spanclass="git-hash">Generated from <ahref="https://gitlab.version.fz-juelich.de/penke3/jsc-pandas-introduction">main repository</a> with Git hashs <abbrtitle="Git hash of main repository">REPO_HASH</abbr> and <abbrtitle="Git hash of this page's branch">PAGES_HASH</abbr></span>