Skip to content
Snippets Groups Projects
Commit 51840204 authored by Amer Delilbasic's avatar Amer Delilbasic
Browse files

Update QA_SVM.ipynb

parent 3b28fe37
Branches
No related tags found
No related merge requests found
%% Cell type:markdown id: tags:
 
# Classification with SVM on the D-Wave Advantage Qauntum Annealer
# Classification with SVM on the D-Wave Advantage Quantum Annealer
 
%% Cell type:markdown id: tags:
 
#### This notebook performs the evaluation and visualization of the results returned from the quantum annealer. The results have to be obtained with another script (e.g. submit_experiments.sh).
 
The classification map that is reported in the paper is the one obtained with the following parameters:
 
- B = 3
- K = 2
- gamma = -1
- xi = 5
- E = 0
- embedding 2
- annealing time = 100
- rel. chain strength = 0.5
- Energy -45.506845443310596
 
On test data
- Overal accuracy 0.873516
- F1 score 0.7344402173456618
 
%% Cell type:markdown id: tags:
 
## Import Packages
 
%% Cell type:code id: tags:
 
``` python
import numpy as np
import glob
from utils import *
import matplotlib.pyplot as plt
from matplotlib import colors
from sklearn import preprocessing
 
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
 
from quantum_SVM import * # QA SVM
```
 
%% Cell type:markdown id: tags:
 
## Load the training and test sets
 
%% Cell type:code id: tags:
 
``` python
# Load training set
key='_tiny'
X_train=np.load('X_train_tile_4'+key+'.npy')
Y_train=np.load('Y_train_tile_4'+key+'.npy')
 
print('X_train',X_train.shape)
print('Y_train',Y_train.shape)
 
# Load test set
X_test=np.load('X_test_tile_8_subregion.npy')
Y_test=np.load('Y_test_tile_8_subregion.npy')
 
print('X_test',X_test.shape)
print('Y_test',Y_test.shape)
 
# for training, the labels have to be -1,+1; i.e., replace 0 -> -1
Y_train=np.where(Y_train==0,-1,Y_train)
 
groundtruth=np.reshape(Y_test,(500,500))
plt.title('Groundtruth')
cmap = colors.ListedColormap(['black', 'red'])
plt.rcParams["figure.figsize"] = (5,5)
view=plt.imshow(groundtruth,cmap=cmap)
```
 
%% Output
 
X_train (50, 8)
Y_train (50,)
X_test (250000, 8)
Y_test (250000,)
 
 
%% Cell type:markdown id: tags:
 
## QSVM
 
%% Cell type:markdown id: tags:
 
### Parameters
 
%% Cell type:code id: tags:
 
``` python
outputpath='output/run_calibtrain'+key
maxalphas=20 # the 20 lowest-energy results returned by the quantum annealer are stored, but for the evaluation, we can consider less and compare
 
# Parameters
Bs=[2,3] #[2,3,5,10] Base
Ks=[2] #[2,3] Number of qubits
xis=[0,1,5] #[0,1,5] Strength to consider the constraint
gammas=[-1] #[-1,0.125,0.25,0.5,1,2,4,8] Kernel
Es=[0,1,2] #[0,1,2] Exponent
annealing_times=[1,10,100]
chain_strengths=[0.2,0.5,1,2,5]
embeddings=[0,1,2,3]
```
 
%% Cell type:markdown id: tags:
 
### Evaluation
 
%% Cell type:code id: tags:
 
``` python
cmap = colors.ListedColormap(['black', 'red'])
plt.title('Prediction')
plt.rcParams["figure.figsize"] = (5,5)
Y_train_bin=np.where(Y_train==-1,0,Y_train)
 
for B in Bs:
for K in Ks:
for gamma in gammas:
for xi in xis:
for E in Es:
dirs=glob.glob(outputpath+f'_B={B}_K={K}_xi={xi}_E={E}_gamma={gamma}/result_couplers=*')
if not dirs:
dirs=glob.glob(outputpath+f'_B={B}_K={K}_xi={xi}_E={E}_gamma={float(gamma)}/result_couplers=*')
path=dirs[0]+'/'
f = open(path+f'collected_data_all_embeddings_maxalphas{maxalphas}.txt',"w")
f.write("#rcs \tt_a \t trainacc\t trainF1score\t testacc\t testF1score\t average energy(train)\n")
for emb in embeddings:
for c in chain_strengths:
for t in annealing_times:
alphas=np.load(path+f'embedding{emb}_rcs{c}_ta{t}_alphas.npy')
if not maxalphas == 0 or maxalphas > len(alphas):
alphas = alphas[0:maxalphas]
 
scores_train=predict(X_train,X_train,Y_train,alphas,path)
Y_predict_train=np.sign(scores_train)
Y_predict_train=np.where(Y_predict_train==-1,0,Y_predict_train)
Y_predict_train=np.where(Y_predict_train==1,1,Y_predict_train)
 
scores=predict(X_test,X_train,Y_train,alphas,path)
Y_predict=np.sign(scores)
Y_predict=np.where(Y_predict==-1,0,Y_predict) # From -1 to 0
Y_predict=np.where(Y_predict==1,1,Y_predict) # From -1 to 1
 
trainacc = accuracy_score(Y_train_bin[:], Y_predict_train)
trainF1score = f1_score(Y_train_bin[:], Y_predict_train)
testacc = accuracy_score(Y_test[:], Y_predict)
testF1score = f1_score(Y_test[:], Y_predict)
alphas_avg = np.mean(alphas,axis=0)
av_energy = compute_energy(alphas_avg,X_train,Y_train,gamma,xi)
 
f.write(f'{c:1.2f}\t {t:4}\t {trainacc:8.4f}\t{trainF1score:8.4f}\t{testacc:8.4f}\t{testF1score:8.4f}\t{av_energy:8.4f}')
f.write("\n")
 
# Visualize the prediction only for reasonable solutions
if testacc > 0.75 and testF1score > 0.7:
print(f'B = {B}, K = {K}, gamma = {gamma}, xi = {xi}, E = {E},\n embedding {emb}, annealing time = {t}, rel. chain strength = {c}')
#print('On train data:')
#print ('Overal accuracy',trainacc)
#print ('F1 score',trainF1score)
print('Energy',av_energy)
print('On test data')
print ('Overal accuracy',testacc)
print ('F1 score',testF1score)
classification_map=np.reshape(Y_predict,(500,500))
plt.imshow(classification_map, cmap=cmap)
plt.clim(0, 1)
plt.show()
 
f.write("\n")
f.write("\n")
f.close()
 
```
 
%% Output
 
B = 2, K = 2, gamma = -1, xi = 0, E = 0,
embedding 0, annealing time = 100, rel. chain strength = 0.5
Energy -63.576530966387956
On test data
Overal accuracy 0.86842
F1 score 0.7326283619575554
 
 
B = 2, K = 2, gamma = -1, xi = 0, E = 0,
embedding 3, annealing time = 1, rel. chain strength = 0.5
Energy -70.07246567078842
On test data
Overal accuracy 0.84796
F1 score 0.7101128737034776
 
 
B = 2, K = 2, gamma = -1, xi = 0, E = 0,
embedding 3, annealing time = 100, rel. chain strength = 0.5
Energy -64.84508239813442
On test data
Overal accuracy 0.877876
F1 score 0.7158400268049105
 
 
B = 2, K = 2, gamma = -1, xi = 0, E = 1,
embedding 2, annealing time = 10, rel. chain strength = 0.2
Energy -38.65519361568767
On test data
Overal accuracy 0.868012
F1 score 0.7030427387348471
 
 
B = 2, K = 2, gamma = -1, xi = 0, E = 1,
embedding 2, annealing time = 100, rel. chain strength = 0.2
Energy -39.17549258303925
On test data
Overal accuracy 0.889452
F1 score 0.7190133899976616
 
 
B = 2, K = 2, gamma = -1, xi = 0, E = 2,
embedding 0, annealing time = 10, rel. chain strength = 0.2
Energy -20.652235656654433
On test data
Overal accuracy 0.888164
F1 score 0.7211878857986219
 
 
B = 2, K = 2, gamma = -1, xi = 1, E = 0,
embedding 0, annealing time = 100, rel. chain strength = 0.5
Energy -38.660751305593045
On test data
Overal accuracy 0.845076
F1 score 0.7018651230457775
 
 
B = 2, K = 2, gamma = -1, xi = 1, E = 0,
embedding 1, annealing time = 10, rel. chain strength = 0.5
Energy -28.59312172758268
On test data
Overal accuracy 0.845788
F1 score 0.7008867958197238
 
 
B = 2, K = 2, gamma = -1, xi = 1, E = 1,
embedding 1, annealing time = 100, rel. chain strength = 0.5
Energy -24.946913849585172
On test data
Overal accuracy 0.879816
F1 score 0.726556243174372
 
 
B = 2, K = 2, gamma = -1, xi = 1, E = 1,
embedding 1, annealing time = 1, rel. chain strength = 1
Energy -17.077607919194183
On test data
Overal accuracy 0.859328
F1 score 0.7156624947446718
 
 
B = 2, K = 2, gamma = -1, xi = 1, E = 1,
embedding 2, annealing time = 10, rel. chain strength = 0.5
Energy -25.241573461584892
On test data
Overal accuracy 0.865208
F1 score 0.7028761881249229
 
 
B = 2, K = 2, gamma = -1, xi = 1, E = 1,
embedding 2, annealing time = 100, rel. chain strength = 0.5
Energy -24.475775335015406
On test data
Overal accuracy 0.887352
F1 score 0.7155008687921768
 
 
B = 2, K = 2, gamma = -1, xi = 1, E = 1,
embedding 3, annealing time = 10, rel. chain strength = 0.5
Energy -20.584173298714248
On test data
Overal accuracy 0.873544
F1 score 0.7167051992042585
 
 
B = 2, K = 2, gamma = -1, xi = 1, E = 2,
embedding 2, annealing time = 100, rel. chain strength = 0.2
Energy -15.571795807843738
On test data
Overal accuracy 0.857188
F1 score 0.7195871916307344
 
 
B = 2, K = 2, gamma = -1, xi = 5, E = 0,
embedding 0, annealing time = 10, rel. chain strength = 0.5
Energy -49.52057699067239
On test data
Overal accuracy 0.88016
F1 score 0.728608438864431
 
 
B = 2, K = 2, gamma = -1, xi = 5, E = 0,
embedding 0, annealing time = 1, rel. chain strength = 1
Energy -35.00944361040178
On test data
Overal accuracy 0.854612
F1 score 0.7104908918572327
 
 
B = 2, K = 2, gamma = -1, xi = 5, E = 0,
embedding 1, annealing time = 1, rel. chain strength = 0.5
Energy -51.22353270783232
On test data
Overal accuracy 0.862656
F1 score 0.7112000807455506
 
 
B = 2, K = 2, gamma = -1, xi = 5, E = 0,
embedding 1, annealing time = 10, rel. chain strength = 0.5
Energy -46.22601878543993
On test data
Overal accuracy 0.862024
F1 score 0.717900487421898
 
 
B = 3, K = 2, gamma = -1, xi = 0, E = 0,
embedding 1, annealing time = 10, rel. chain strength = 2
Energy -71.4961865237801
On test data
Overal accuracy 0.840008
F1 score 0.7030674664449459
 
 
B = 3, K = 2, gamma = -1, xi = 0, E = 0,
embedding 1, annealing time = 100, rel. chain strength = 5
Energy -57.971641450473626
On test data
Overal accuracy 0.852416
F1 score 0.7174971670086675
 
 
B = 3, K = 2, gamma = -1, xi = 0, E = 0,
embedding 3, annealing time = 1, rel. chain strength = 2
Energy -78.40885247496453
On test data
Overal accuracy 0.865312
F1 score 0.7132980263269927
 
 
B = 3, K = 2, gamma = -1, xi = 0, E = 2,
embedding 1, annealing time = 100, rel. chain strength = 1
Energy -11.503963942188145
On test data
Overal accuracy 0.882028
F1 score 0.7207128720371967
 
 
B = 3, K = 2, gamma = -1, xi = 0, E = 2,
embedding 1, annealing time = 1, rel. chain strength = 2
Energy -11.399774035125132
On test data
Overal accuracy 0.882368
F1 score 0.7165275394729232
 
 
B = 3, K = 2, gamma = -1, xi = 0, E = 2,
embedding 2, annealing time = 10, rel. chain strength = 0.2
Energy -12.269963970450435
On test data
Overal accuracy 0.884696
F1 score 0.7036679139767261
 
 
B = 3, K = 2, gamma = -1, xi = 0, E = 2,
embedding 2, annealing time = 100, rel. chain strength = 0.2
Energy -12.051694743974974
On test data
Overal accuracy 0.884484
F1 score 0.7337531230696894
 
 
B = 3, K = 2, gamma = -1, xi = 1, E = 0,
embedding 1, annealing time = 100, rel. chain strength = 0.5
Energy -17.912004495524627
On test data
Overal accuracy 0.846016
F1 score 0.7009833620729832
 
 
B = 3, K = 2, gamma = -1, xi = 1, E = 1,
embedding 0, annealing time = 1, rel. chain strength = 0.2
Energy -18.20281620772596
On test data
Overal accuracy 0.86164
F1 score 0.7187393277064936
 
 
B = 3, K = 2, gamma = -1, xi = 1, E = 1,
embedding 1, annealing time = 10, rel. chain strength = 0.5
Energy -20.175029096824993
On test data
Overal accuracy 0.864616
F1 score 0.7201144482667372
 
 
B = 3, K = 2, gamma = -1, xi = 1, E = 1,
embedding 2, annealing time = 100, rel. chain strength = 0.5
Energy -20.659998098494363
On test data
Overal accuracy 0.884052
F1 score 0.7282681040543707
 
 
B = 3, K = 2, gamma = -1, xi = 1, E = 2,
embedding 2, annealing time = 10, rel. chain strength = 0.5
Energy -8.640766055370284
On test data
Overal accuracy 0.846384
F1 score 0.7060363435954746
 
 
B = 3, K = 2, gamma = -1, xi = 1, E = 2,
embedding 2, annealing time = 100, rel. chain strength = 0.5
Energy -8.614799617154471
On test data
Overal accuracy 0.873596
F1 score 0.7318745280377401
 
 
B = 3, K = 2, gamma = -1, xi = 1, E = 2,
embedding 2, annealing time = 10, rel. chain strength = 1
Energy -7.426846642711299
On test data
Overal accuracy 0.85826
F1 score 0.7184055563943832
 
 
B = 3, K = 2, gamma = -1, xi = 5, E = 0,
embedding 2, annealing time = 100, rel. chain strength = 0.5
Energy -45.506845443310596
On test data
Overal accuracy 0.873516
F1 score 0.7344402173456618
 
 
B = 3, K = 2, gamma = -1, xi = 5, E = 1,
embedding 0, annealing time = 100, rel. chain strength = 0.5
Energy -23.736552843941126
On test data
Overal accuracy 0.884704
F1 score 0.7175225401803215
 
 
B = 3, K = 2, gamma = -1, xi = 5, E = 1,
embedding 2, annealing time = 10, rel. chain strength = 0.5
Energy -23.863110771134867
On test data
Overal accuracy 0.88446
F1 score 0.7171880354432859
 
 
B = 3, K = 2, gamma = -1, xi = 5, E = 1,
embedding 3, annealing time = 10, rel. chain strength = 0.2
Energy -23.79218276655323
On test data
Overal accuracy 0.878908
F1 score 0.7264545627050033
 
 
%% Cell type:code id: tags:
 
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment