Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
2
2023-nov-intro-to-supercompting-jsc
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Alexandre Strube
2023-nov-intro-to-supercompting-jsc
Commits
39fe358a
Commit
39fe358a
authored
May 31, 2023
by
Alexandre Strube
Browse files
Options
Downloads
Patches
Plain Diff
big models
parent
ad0e525f
Branches
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#140818
passed
May 31, 2023
Stage: test
Stage: deploy
Changes
2
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
01-deep-learning-on-supercomputers.md
+12
-9
12 additions, 9 deletions
01-deep-learning-on-supercomputers.md
public/01-deep-learning-on-supercomputers.html
+20
-11
20 additions, 11 deletions
public/01-deep-learning-on-supercomputers.html
with
32 additions
and
20 deletions
01-deep-learning-on-supercomputers.md
+
12
−
9
View file @
39fe358a
...
@@ -652,25 +652,28 @@ real 1m19.979s
...
@@ -652,25 +652,28 @@ real 1m19.979s
-
```bash
-
```bash
epoch train_loss valid_loss accuracy top_k_accuracy time
epoch train_loss valid_loss accuracy top_k_accuracy time
0 2.2
3092
6 2.
414113 0.170986 0.654726
00:10
0 2.2
4203
6 2.
192690 0.201728 0.681148
00:10
epoch train_loss valid_loss accuracy top_k_accuracy time
epoch train_loss valid_loss accuracy top_k_accuracy time
0 1.986611 1.993477 0.298018 0.790142 00:06
0 2.035004 2.084082 0.246189 0.748984 00:05
1 1.954962 2.180505 0.249238 0.765498 00:06
1 1.981432 2.054528 0.247205 0.764482 00:05
2 1.915481 2.004775 0.301829 0.803354 00:06
2 1.942930 1.918441 0.316057 0.821138 00:05
3 1.853237 1.827811 0.364583 0.837906 00:06
3 1.898426 1.832725 0.370173 0.839431 00:05
4 1.783993 1.779548 0.391768 0.847307 00:06
4 1.859066 1.781805 0.375508 0.858740 00:05
5 1.718417 1.642507 0.422002 0.884909 00:06
5 1.820968 1.743448 0.394055 0.864583 00:05
real 1m15.651s
```
```
---
---
## Some insights
## Some insights
-
It's faster per epoch, but not by much (
6
seconds vs 8 seconds)
-
It's faster per epoch, but not by much (
5
seconds vs 8 seconds)
-
Accuracy and loss suffered
-
Accuracy and loss suffered
-
This is a very simple model, so it's not surprising
-
This is a very simple model, so it's not surprising
-
It fits into 4gb, we "stretched" it to a 320gb system
-
You need bigger models to really exercise the gpu and scaling
-
You need bigger models to really exercise the gpu and scaling
-
There's a lot more to that
-
There's a lot more to that, but for now, let's focus on medium/big sized models
-
For Gigantic and Humongous-sized models, there's a DL scaling course at JSC!
---
---
...
...
This diff is collapsed.
Click to expand it.
public/01-deep-learning-on-supercomputers.html
+
20
−
11
View file @
39fe358a
...
@@ -850,27 +850,36 @@ submission file!</li>
...
@@ -850,27 +850,36 @@ submission file!</li>
<ul>
<ul>
<li
class=
"fragment"
><div
class=
"sourceCode"
id=
"cb15"
><pre
<li
class=
"fragment"
><div
class=
"sourceCode"
id=
"cb15"
><pre
class=
"sourceCode bash"
><code
class=
"sourceCode bash"
><span
id=
"cb15-1"
><a
href=
"#cb15-1"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
epoch
</span>
train_loss valid_loss accuracy top_k_accuracy time
</span>
class=
"sourceCode bash"
><code
class=
"sourceCode bash"
><span
id=
"cb15-1"
><a
href=
"#cb15-1"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
epoch
</span>
train_loss valid_loss accuracy top_k_accuracy time
</span>
<span
id=
"cb15-2"
><a
href=
"#cb15-2"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
0
</span>
2.2
3092
6 2.
414113 0.170986 0.654726
00:10
</span>
<span
id=
"cb15-2"
><a
href=
"#cb15-2"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
0
</span>
2.2
4203
6 2.
192690 0.201728 0.681148
00:10
</span>
<span
id=
"cb15-3"
><a
href=
"#cb15-3"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
epoch
</span>
train_loss valid_loss accuracy top_k_accuracy time
</span>
<span
id=
"cb15-3"
><a
href=
"#cb15-3"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
epoch
</span>
train_loss valid_loss accuracy top_k_accuracy time
</span>
<span
id=
"cb15-4"
><a
href=
"#cb15-4"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
0
</span>
1.986611 1.993477 0.298018 0.790142 00:06
</span>
<span
id=
"cb15-4"
><a
href=
"#cb15-4"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
0
</span>
2.035004 2.084082 0.246189 0.748984 00:05
</span>
<span
id=
"cb15-5"
><a
href=
"#cb15-5"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
1
</span>
1.954962 2.180505 0.249238 0.765498 00:06
</span>
<span
id=
"cb15-5"
><a
href=
"#cb15-5"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
1
</span>
1.981432 2.054528 0.247205 0.764482 00:05
</span>
<span
id=
"cb15-6"
><a
href=
"#cb15-6"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
2
</span>
1.915481 2.004775 0.301829 0.803354 00:06
</span>
<span
id=
"cb15-6"
><a
href=
"#cb15-6"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
2
</span>
1.942930 1.918441 0.316057 0.821138 00:05
</span>
<span
id=
"cb15-7"
><a
href=
"#cb15-7"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
3
</span>
1.853237 1.827811 0.364583 0.837906 00:06
</span>
<span
id=
"cb15-7"
><a
href=
"#cb15-7"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
3
</span>
1.898426 1.832725 0.370173 0.839431 00:05
</span>
<span
id=
"cb15-8"
><a
href=
"#cb15-8"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
4
</span>
1.783993 1.779548 0.391768 0.847307 00:06
</span>
<span
id=
"cb15-8"
><a
href=
"#cb15-8"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
4
</span>
1.859066 1.781805 0.375508 0.858740 00:05
</span>
<span
id=
"cb15-9"
><a
href=
"#cb15-9"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
5
</span>
1.718417 1.642507 0.422002 0.884909 00:06
</span></code></pre></div></li>
<span
id=
"cb15-9"
><a
href=
"#cb15-9"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
5
</span>
1.820968 1.743448 0.394055 0.864583 00:05
</span>
<span
id=
"cb15-10"
><a
href=
"#cb15-10"
aria-hidden=
"true"
tabindex=
"-1"
></a><span
class=
"ex"
>
real
</span>
1m15.651s
</span></code></pre></div></li>
</ul>
</ul>
</section>
</section>
<section
id=
"some-insights-1"
class=
"slide level2"
>
<section
id=
"some-insights-1"
class=
"slide level2"
>
<h2>
Some insights
</h2>
<h2>
Some insights
</h2>
<ul>
<ul>
<li
class=
"fragment"
>
It’s faster per epoch, but not by much (
6
seconds
<li
class=
"fragment"
>
It’s faster per epoch, but not by much (
5
seconds
vs 8 seconds)
</li>
vs 8 seconds)
</li>
<li
class=
"fragment"
>
Accuracy and loss suffered
</li>
<li
class=
"fragment"
>
Accuracy and loss suffered
</li>
<li
class=
"fragment"
>
This is a very simple model, so it’s not
<li
class=
"fragment"
>
This is a very simple model, so it’s not surprising
surprising
</li>
<ul>
<li
class=
"fragment"
>
It fits into 4gb, we “stretched” it to a 320gb
system
</li>
</ul></li>
<li
class=
"fragment"
>
You need bigger models to really exercise the gpu
<li
class=
"fragment"
>
You need bigger models to really exercise the gpu
and scaling
</li>
and scaling
</li>
<li
class=
"fragment"
>
There’s a lot more to that
</li>
<li
class=
"fragment"
>
There’s a lot more to that, but for now, let’s
focus on medium/big sized models
<ul>
<li
class=
"fragment"
>
For Gigantic and Humongous-sized models, there’s a
DL scaling course at JSC!
</li>
</ul></li>
</ul>
</ul>
</section>
</section>
<section
id=
"thats-all-folks"
class=
"slide level2"
>
<section
id=
"thats-all-folks"
class=
"slide level2"
>
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment