Select Git revision
test_experiment_setup.py
test_experiment_setup.py 10.85 KiB
import argparse
import logging
import os
import pytest
from mlair.helpers import TimeTracking, to_list
from mlair.configuration.path_config import prepare_host
from mlair.run_modules.experiment_setup import ExperimentSetup
class TestExperimentSetup:
@pytest.fixture
def empty_obj(self, caplog):
obj = object.__new__(ExperimentSetup)
super(ExperimentSetup, obj).__init__()
caplog.set_level(logging.DEBUG)
return obj
def test_set_param_by_value(self, caplog, empty_obj):
empty_obj._set_param("23tester", 23)
assert caplog.record_tuples[-1] == ('root', 10, 'set experiment attribute: 23tester(general)=23')
assert empty_obj.data_store.get("23tester", "general") == 23
def test_set_param_by_value_and_scope(self, caplog, empty_obj):
empty_obj._set_param("109tester", 109, "general.testing")
assert empty_obj.data_store.get("109tester", "general.tester") == 109
def test_set_param_with_default(self, caplog, empty_obj):
empty_obj._set_param("NoneTester", None, "notNone", "general.testing")
assert empty_obj.data_store.get("NoneTester", "general.testing") == "notNone"
empty_obj._set_param("AnotherNoneTester", None)
assert empty_obj.data_store.get("AnotherNoneTester", "general") is None
def test_set_param_with_apply(self, caplog, empty_obj):
empty_obj._set_param("NoneTester", None, default="notNone", apply=None)
assert empty_obj.data_store.get("NoneTester") == "notNone"
empty_obj._set_param("NoneTester", None, default="notNone", apply=to_list)
assert empty_obj.data_store.get("NoneTester") == ["notNone"]
empty_obj._set_param("NoneTester", None, apply=to_list)
assert empty_obj.data_store.get("NoneTester") == [None]
empty_obj._set_param("NoneTester", 2.3, apply=int)
assert empty_obj.data_store.get("NoneTester") == 2
def test_init_default(self):
exp_setup = ExperimentSetup()
data_store = exp_setup.data_store
# experiment setup
assert data_store.get("data_path", "general") == prepare_host()
assert data_store.get("train_model", "general") is True
assert data_store.get("create_new_model", "general") is True
assert data_store.get("fraction_of_training", "general") == 0.8
# set experiment name
assert data_store.get("experiment_name", "general") == "TestExperiment_daily"
path = os.path.abspath(os.path.join(os.getcwd(), "TestExperiment_daily"))
assert data_store.get("experiment_path", "general") == path
default_statistics_per_var = {'o3': 'dma8eu', 'relhum': 'average_values', 'temp': 'maximum',
'u': 'average_values', 'v': 'average_values', 'no': 'dma8eu', 'no2': 'dma8eu',
'cloudcover': 'average_values', 'pblheight': 'maximum'}
# setup for data
default_stations = ['DEBW107', 'DEBY081', 'DEBW013', 'DEBW076', 'DEBW087']
assert data_store.get("stations", "general") == default_stations
assert data_store.get("variables", "general") == list(default_statistics_per_var.keys())
assert data_store.get("statistics_per_var", "general") == default_statistics_per_var
assert data_store.get("start", "general") == "1997-01-01"
assert data_store.get("end", "general") == "2017-12-31"
assert data_store.get("window_history_size", "general") == 13
# target
assert data_store.get("target_var", "general") == "o3"
assert data_store.get("target_dim", "general") == "variables"
assert data_store.get("window_lead_time", "general") == 3
# interpolation
assert data_store.get("dimensions", "general") == {'new_index': ['datetime', 'Stations']}
assert data_store.get("time_dim", "general") == "datetime"
assert data_store.get("interpolation_method", "general") == "linear"
assert data_store.get("interpolation_limit", "general") == 1
# train parameters
assert data_store.get("start", "general.train") == "1997-01-01"
assert data_store.get("end", "general.train") == "2007-12-31"
assert data_store.get("min_length", "general.train") == 90
# validation parameters
assert data_store.get("start", "general.val") == "2008-01-01"
assert data_store.get("end", "general.val") == "2009-12-31"
assert data_store.get("min_length", "general.val") == 90
# test parameters
assert data_store.get("start", "general.test") == "2010-01-01"
assert data_store.get("end", "general.test") == "2017-12-31"
assert data_store.get("min_length", "general.test") == 90
# train_val parameters
assert data_store.get("start", "general.train_val") == "1997-01-01"
assert data_store.get("end", "general.train_val") == "2009-12-31"
assert data_store.get("min_length", "general.train_val") == 180
# use all stations on all data sets (train, val, test)
assert data_store.get("use_all_stations_on_all_data_sets", "general") is True
def test_init_no_default(self):
experiment_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data", "testExperimentFolder"))
kwargs = dict(experiment_date= "TODAY",
statistics_per_var={'o3': 'dma8eu', 'relhum': 'average_values', 'temp': 'maximum'},
stations=['DEBY053', 'DEBW059', 'DEBW027'], network="INTERNET", station_type="background",
variables=["o3", "temp"], start="1999-01-01", end="2001-01-01", window_history_size=4,
target_var="relhum", target_dim="target", window_lead_time=10, dimensions="dim1",
time_dim="int_dim", interpolation_method="cubic", interpolation_limit=5, train_start="2000-01-01",
train_end="2000-01-02", val_start="2000-01-03", val_end="2000-01-04", test_start="2000-01-05",
test_end="2000-01-06", use_all_stations_on_all_data_sets=False, trainable=False,
fraction_of_train=0.5, experiment_path=experiment_path, create_new_model=True, val_min_length=20)
exp_setup = ExperimentSetup(**kwargs)
data_store = exp_setup.data_store
# experiment setup
assert data_store.get("data_path", "general") == prepare_host()
assert data_store.get("train_model", "general") is True
assert data_store.get("create_new_model", "general") is True
assert data_store.get("fraction_of_training", "general") == 0.5
# set experiment name
assert data_store.get("experiment_name", "general") == "TODAY_network_daily"
path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data", "testExperimentFolder",
"TODAY_network_daily"))
assert data_store.get("experiment_path", "general") == path
# setup for data
assert data_store.get("stations", "general") == ['DEBY053', 'DEBW059', 'DEBW027']
assert data_store.get("network", "general") == "INTERNET"
assert data_store.get("station_type", "general") == "background"
assert data_store.get("variables", "general") == ["o3", "temp"]
assert data_store.get("statistics_per_var", "general") == {'o3': 'dma8eu', 'relhum': 'average_values',
'temp': 'maximum'}
assert data_store.get("start", "general") == "1999-01-01"
assert data_store.get("end", "general") == "2001-01-01"
assert data_store.get("window_history_size", "general") == 4
# target
assert data_store.get("target_var", "general") == "relhum"
assert data_store.get("target_dim", "general") == "target"
assert data_store.get("window_lead_time", "general") == 10
# interpolation
assert data_store.get("dimensions", "general") == "dim1"
assert data_store.get("time_dim", "general") == "int_dim"
assert data_store.get("interpolation_method", "general") == "cubic"
assert data_store.get("interpolation_limit", "general") == 5
# train parameters
assert data_store.get("start", "general.train") == "2000-01-01"
assert data_store.get("end", "general.train") == "2000-01-02"
assert data_store.get("min_length", "general.train") == 90
# validation parameters
assert data_store.get("start", "general.val") == "2000-01-03"
assert data_store.get("end", "general.val") == "2000-01-04"
assert data_store.get("min_length", "general.val") == 20
# test parameters
assert data_store.get("start", "general.test") == "2000-01-05"
assert data_store.get("end", "general.test") == "2000-01-06"
assert data_store.get("min_length", "general.test") == 90
# train_val parameters
assert data_store.get("start", "general.train_val") == "2000-01-01"
assert data_store.get("end", "general.train_val") == "2000-01-04"
assert data_store.get("min_length", "general.train_val") == 110
# use all stations on all data sets (train, val, test)
assert data_store.get("use_all_stations_on_all_data_sets", "general.test") is False
def test_init_train_model_behaviour(self):
exp_setup = ExperimentSetup(train_model=False, create_new_model=True)
data_store = exp_setup.data_store
assert data_store.get("train_model", "general") is True
assert data_store.get("create_new_model", "general") is True
exp_setup = ExperimentSetup(train_model=False, create_new_model=False)
data_store = exp_setup.data_store
assert data_store.get("train_model", "general") is False
assert data_store.get("create_new_model", "general") is False
exp_setup = ExperimentSetup(train_model=True, create_new_model=True)
data_store = exp_setup.data_store
assert data_store.get("train_model", "general") is True
assert data_store.get("create_new_model", "general") is True
exp_setup = ExperimentSetup(train_model=True, create_new_model=False)
data_store = exp_setup.data_store
assert data_store.get("train_model", "general") is True
assert data_store.get("create_new_model", "general") is False
def test_compare_variables_and_statistics(self):
experiment_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data", "testExperimentFolder"))
kwargs = dict(experiment_date="TODAY",
statistics_per_var={'o3': 'dma8eu', 'temp': 'maximum'},
stations=['DEBY053', 'DEBW059', 'DEBW027'], variables=["o3", "relhum"],
experiment_path=experiment_path)
with pytest.raises(ValueError) as e:
ExperimentSetup(**kwargs)
assert "for the variables: {'relhum'}" in e.value.args[0]
kwargs["variables"] = ["o3", "temp"]
assert ExperimentSetup(**kwargs) is not None