Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
1027e284
Commit
1027e284
authored
5 years ago
by
lukas leufen
Browse files
Options
Downloads
Patches
Plain Diff
first time series plot implementation, but zoom-in needs to be implemented
parent
e3b98733
Branches
Branches containing commit
Tags
Tags containing commit
2 merge requests
!37
include new development
,
!35
Lukas issue046 feat time series plot
Pipeline
#29254
passed
5 years ago
Stage: test
Stage: pages
Stage: deploy
Changes
2
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/plotting/postprocessing_plotting.py
+54
-0
54 additions, 0 deletions
src/plotting/postprocessing_plotting.py
src/run_modules/post_processing.py
+18
-21
18 additions, 21 deletions
src/run_modules/post_processing.py
with
72 additions
and
21 deletions
src/plotting/postprocessing_plotting.py
+
54
−
0
View file @
1027e284
...
...
@@ -477,3 +477,57 @@ class PlotCompetitiveSkillScore(RunEnvironment):
logging
.
debug
(
f
"
... save plot to
{
plot_name
}
"
)
plt
.
savefig
(
plot_name
,
dpi
=
500
)
plt
.
close
()
class
PlotTimeSeries
(
RunEnvironment
):
def
__init__
(
self
,
stations
:
List
,
data_path
:
str
,
name
:
str
,
window_lead_time
:
int
=
None
,
plot_folder
:
str
=
"
.
"
):
super
().
__init__
()
self
.
_data_path
=
data_path
self
.
_data_name
=
name
self
.
_stations
=
stations
self
.
_window_lead_time
=
self
.
_get_window_lead_time
(
window_lead_time
)
self
.
_plot
(
plot_folder
)
def
_get_window_lead_time
(
self
,
window_lead_time
:
int
):
"""
Extract the lead time from data and arguments. If window_lead_time is not given, extract this information from
data itself by the number of ahead dimensions. If given, check if data supports the give length. If the number
of ahead dimensions in data is lower than the given lead time, data
'
s lead time is used.
:param window_lead_time: lead time from arguments to validate
:return: validated lead time, comes either from given argument or from data itself
"""
ahead_steps
=
len
(
self
.
_load_data
(
self
.
_stations
[
0
]).
ahead
)
if
window_lead_time
is
None
:
window_lead_time
=
ahead_steps
return
min
(
ahead_steps
,
window_lead_time
)
def
_load_data
(
self
,
station
):
logging
.
debug
(
f
"
... preprocess station
{
station
}
"
)
file_name
=
os
.
path
.
join
(
self
.
_data_path
,
self
.
_data_name
%
station
)
data
=
xr
.
open_dataarray
(
file_name
)
return
data
.
sel
(
type
=
[
"
CNN
"
,
"
orig
"
])
def
_plot
(
self
,
plot_folder
):
f
,
axes
=
plt
.
subplots
(
len
(
self
.
_stations
),
sharex
=
"
all
"
)
color_palette
=
[
matplotlib
.
colors
.
cnames
[
"
green
"
]]
+
sns
.
color_palette
(
"
Blues_d
"
,
self
.
_window_lead_time
).
as_hex
()
for
pos
,
station
in
enumerate
(
self
.
_stations
):
data
=
self
.
_load_data
(
station
)
axes
[
pos
].
plot
(
data
.
index
+
np
.
timedelta64
(
1
,
"
D
"
),
data
.
sel
(
type
=
"
CNN
"
,
ahead
=
1
).
values
,
color
=
color_palette
[
0
])
for
ahead
in
data
.
coords
[
"
ahead
"
].
values
:
plot_data
=
data
.
sel
(
type
=
"
CNN
"
,
ahead
=
ahead
).
drop
([
"
type
"
,
"
ahead
"
]).
squeeze
()
axes
[
pos
].
plot
(
plot_data
.
index
+
np
.
timedelta64
(
int
(
ahead
),
"
D
"
),
plot_data
.
values
,
color
=
color_palette
[
ahead
])
self
.
_save
(
plot_folder
)
@staticmethod
def
_save
(
plot_folder
):
"""
Standard save method to store plot locally. The name of this plot is static.
:param plot_folder: path to save the plot
"""
plot_name
=
os
.
path
.
join
(
os
.
path
.
abspath
(
plot_folder
),
'
test_timeseries_plot.pdf
'
)
logging
.
debug
(
f
"
... save plot to
{
plot_name
}
"
)
plt
.
savefig
(
plot_name
,
dpi
=
500
)
plt
.
close
(
'
all
'
)
This diff is collapsed.
Click to expand it.
src/run_modules/post_processing.py
+
18
−
21
View file @
1027e284
...
...
@@ -16,7 +16,8 @@ from src.data_handling.data_generator import DataGenerator
from
src.model_modules.linear_model
import
OrdinaryLeastSquaredModel
from
src
import
statistics
from
src.plotting.postprocessing_plotting
import
plot_conditional_quantiles
from
src.plotting.postprocessing_plotting
import
PlotMonthlySummary
,
PlotStationMap
,
PlotClimatologicalSkillScore
,
PlotCompetitiveSkillScore
from
src.plotting.postprocessing_plotting
import
PlotMonthlySummary
,
PlotStationMap
,
PlotClimatologicalSkillScore
,
\
PlotCompetitiveSkillScore
,
PlotTimeSeries
from
src.datastore
import
NameNotFoundInDataStore
from
src.helpers
import
TimeTracking
...
...
@@ -42,10 +43,10 @@ class PostProcessing(RunEnvironment):
logging
.
info
(
"
take a look on the next reported time measure. If this increases a lot, one should think to
"
"
skip make_prediction() whenever it is possible to save time.
"
)
with
TimeTracking
():
preds_for_all_stations
=
self
.
make_prediction
()
self
.
make_prediction
()
logging
.
info
(
"
take a look on the next reported time measure. If this increases a lot, one should think to
"
"
skip make_prediction() whenever it is possible to save time.
"
)
self
.
skill_scores
=
self
.
calculate_skill_scores
()
#
self.skill_scores = self.calculate_skill_scores()
self
.
plot
()
def
_load_model
(
self
):
...
...
@@ -64,17 +65,18 @@ class PostProcessing(RunEnvironment):
path
=
self
.
data_store
.
get
(
"
forecast_path
"
,
"
general
"
)
target_var
=
self
.
data_store
.
get
(
"
target_var
"
,
"
general
"
)
plot_conditional_quantiles
(
self
.
test_data
.
stations
,
pred_name
=
"
CNN
"
,
ref_name
=
"
orig
"
,
forecast_path
=
path
,
plot_name_affix
=
"
cali-ref
"
,
plot_folder
=
self
.
plot_path
)
plot_conditional_quantiles
(
self
.
test_data
.
stations
,
pred_name
=
"
orig
"
,
ref_name
=
"
CNN
"
,
forecast_path
=
path
,
plot_name_affix
=
"
like-bas
"
,
plot_folder
=
self
.
plot_path
)
PlotStationMap
(
generators
=
{
'
b
'
:
self
.
test_data
},
plot_folder
=
self
.
plot_path
)
PlotMonthlySummary
(
self
.
test_data
.
stations
,
path
,
r
"
forecasts_%s_test.nc
"
,
target_var
,
plot_folder
=
self
.
plot_path
)
PlotClimatologicalSkillScore
(
self
.
skill_scores
[
1
],
plot_folder
=
self
.
plot_path
,
model_setup
=
"
CNN
"
)
PlotClimatologicalSkillScore
(
self
.
skill_scores
[
1
],
plot_folder
=
self
.
plot_path
,
score_only
=
False
,
extra_name_tag
=
"
all_terms_
"
,
model_setup
=
"
CNN
"
)
PlotCompetitiveSkillScore
(
self
.
skill_scores
[
0
],
plot_folder
=
self
.
plot_path
,
model_setup
=
"
CNN
"
)
# plot_conditional_quantiles(self.test_data.stations, pred_name="CNN", ref_name="orig",
# forecast_path=path, plot_name_affix="cali-ref", plot_folder=self.plot_path)
# plot_conditional_quantiles(self.test_data.stations, pred_name="orig", ref_name="CNN",
# forecast_path=path, plot_name_affix="like-bas", plot_folder=self.plot_path)
# PlotStationMap(generators={'b': self.test_data}, plot_folder=self.plot_path)
# PlotMonthlySummary(self.test_data.stations, path, r"forecasts_%s_test.nc", target_var,
# plot_folder=self.plot_path)
# PlotClimatologicalSkillScore(self.skill_scores[1], plot_folder=self.plot_path, model_setup="CNN")
# PlotClimatologicalSkillScore(self.skill_scores[1], plot_folder=self.plot_path, score_only=False,
# extra_name_tag="all_terms_", model_setup="CNN")
# PlotCompetitiveSkillScore(self.skill_scores[0], plot_folder=self.plot_path, model_setup="CNN")
PlotTimeSeries
(
self
.
test_data
.
stations
,
path
,
r
"
forecasts_%s_test.nc
"
,
plot_folder
=
self
.
plot_path
)
def
calculate_test_score
(
self
):
test_score
=
self
.
model
.
evaluate_generator
(
generator
=
self
.
test_data_distributed
.
distribute_on_batches
(),
...
...
@@ -93,12 +95,11 @@ class PostProcessing(RunEnvironment):
def
make_prediction
(
self
,
freq
=
"
1D
"
):
logging
.
debug
(
"
start make_prediction
"
)
nn_prediction_all_stations
=
[]
for
i
,
v
in
enumerate
(
self
.
test_data
):
for
i
,
_
in
enumerate
(
self
.
test_data
):
data
=
self
.
test_data
.
get_data_generator
(
i
)
nn_prediction
,
persistence_prediction
,
ols_prediction
=
self
.
_create_empty_prediction_arrays
(
data
,
count
=
3
)
input_data
=
self
.
test_data
[
i
][
0
]
input_data
=
data
.
get_transposed_history
()
# get scaling parameters
mean
,
std
,
transformation_method
=
data
.
get_transformation_information
(
variable
=
'
o3
'
)
...
...
@@ -129,10 +130,6 @@ class PostProcessing(RunEnvironment):
file
=
os
.
path
.
join
(
path
,
f
"
forecasts_
{
data
.
station
[
0
]
}
_test.nc
"
)
all_predictions
.
to_netcdf
(
file
)
# save nn forecast to return variable
nn_prediction_all_stations
.
append
(
nn_prediction
)
return
nn_prediction_all_stations
@staticmethod
def
_create_orig_forecast
(
data
,
_
,
mean
,
std
,
transformation_method
):
return
statistics
.
apply_inverse_transformation
(
data
.
label
.
copy
(),
mean
,
std
,
transformation_method
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment