Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
1d72bb15
Commit
1d72bb15
authored
5 years ago
by
Felix Kleinert
Browse files
Options
Downloads
Patches
Plain Diff
#56
inital commit for advanced paddings
parent
029ffbb0
Branches
Branches containing commit
Tags
Tags containing commit
2 merge requests
!59
Develop
,
!46
Felix #56 advanced paddings
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/model_modules/advanced_paddings.py
+157
-0
157 additions, 0 deletions
src/model_modules/advanced_paddings.py
with
157 additions
and
0 deletions
src/model_modules/advanced_paddings.py
0 → 100644
+
157
−
0
View file @
1d72bb15
__author__
=
'
Felix Kleinert
'
__date__
=
'
2020-03-02
'
import
tensorflow
as
tf
import
numpy
as
np
import
keras.backend
as
K
from
keras.layers.convolutional
import
_ZeroPadding
from
keras.legacy
import
interfaces
from
keras.utils
import
conv_utils
from
keras.utils.generic_utils
import
transpose_shape
from
keras.backend.common
import
normalize_data_format
# class pad_utils:
# @staticmethod
# def get_padding_for_same(kernel_size, strides=1):
# '''
# This methods calculates the padding size to keep input and output dimensions equal for a given kernel size
# (STRIDES HAVE TO BE EQUAL TO ONE!)
# :param kernel_size:
# :return:
# '''
# if strides != 1:
# raise NotImplementedError("Strides other than 1 not implemented!")
# ks = np.array(kernel_size, dtype=np.int64)
# if (d & 0x1 for d in ks):
# pad = ((ks - 1) / 2).astype(np.int64)
# # pad = ((pad[0], pad[0]), (pad[1], pad[1]))
# return pad
# else:
# raise NotImplementedError("even kernel size not implemented")
#
class
ReflectionPadding2D
(
_ZeroPadding
):
"""
Zero-padding layer for 2D input (e.g. picture).
This layer can add rows and columns of zeros
at the top, bottom, left and right side of an image tensor.
# Arguments
padding: int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints.
- If int: the same symmetric padding
is applied to height and width.
- If tuple of 2 ints:
interpreted as two different
symmetric padding values for height and width:
`(symmetric_height_pad, symmetric_width_pad)`.
- If tuple of 2 tuples of 2 ints:
interpreted as
`((top_pad, bottom_pad), (left_pad, right_pad))`
data_format: A string,
one of `
"
channels_last
"
` or `
"
channels_first
"
`.
The ordering of the dimensions in the inputs.
`
"
channels_last
"
` corresponds to inputs with shape
`(batch, height, width, channels)` while `
"
channels_first
"
`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be
"
channels_last
"
.
# Input shape
4D tensor with shape:
- If `data_format` is `
"
channels_last
"
`:
`(batch, rows, cols, channels)`
- If `data_format` is `
"
channels_first
"
`:
`(batch, channels, rows, cols)`
# Output shape
4D tensor with shape:
- If `data_format` is `
"
channels_last
"
`:
`(batch, padded_rows, padded_cols, channels)`
- If `data_format` is `
"
channels_first
"
`:
`(batch, channels, padded_rows, padded_cols)`
"""
@interfaces.legacy_zeropadding2d_support
def
__init__
(
self
,
padding
=
(
1
,
1
),
data_format
=
None
,
**
kwargs
):
if
isinstance
(
padding
,
int
):
normalized_padding
=
((
padding
,
padding
),
(
padding
,
padding
))
elif
hasattr
(
padding
,
'
__len__
'
):
if
len
(
padding
)
!=
2
:
raise
ValueError
(
'
`padding` should have two elements.
'
'
Found:
'
+
str
(
padding
))
height_padding
=
conv_utils
.
normalize_tuple
(
padding
[
0
],
2
,
'
1st entry of padding
'
)
width_padding
=
conv_utils
.
normalize_tuple
(
padding
[
1
],
2
,
'
2nd entry of padding
'
)
normalized_padding
=
(
height_padding
,
width_padding
)
else
:
raise
ValueError
(
'
`padding` should be either an int,
'
'
a tuple of 2 ints
'
'
(symmetric_height_pad, symmetric_width_pad),
'
'
or a tuple of 2 tuples of 2 ints
'
'
((top_pad, bottom_pad), (left_pad, right_pad)).
'
'
Found:
'
+
str
(
padding
))
super
(
ReflectionPadding2D
,
self
).
__init__
(
normalized_padding
,
data_format
,
**
kwargs
)
@staticmethod
def
spatial_2d_padding
(
x
,
padding
=
((
1
,
1
),
(
1
,
1
)),
data_format
=
None
):
"""
Pads the 2nd and 3rd dimensions of a 4D tensor.
# Arguments
x: Tensor or variable.
padding: Tuple of 2 tuples, padding pattern.
data_format: string, `
"
channels_last
"
` or `
"
channels_first
"
`.
# Returns
A padded 4D tensor.
# Raises
ValueError: if `data_format` is neither `
"
channels_last
"
` or `
"
channels_first
"
`.
"""
assert
len
(
padding
)
==
2
assert
len
(
padding
[
0
])
==
2
assert
len
(
padding
[
1
])
==
2
data_format
=
normalize_data_format
(
data_format
)
pattern
=
[[
0
,
0
],
list
(
padding
[
0
]),
list
(
padding
[
1
]),
[
0
,
0
]]
pattern
=
transpose_shape
(
pattern
,
data_format
,
spatial_axes
=
(
1
,
2
))
return
pattern
def
call
(
self
,
inputs
,
mask
=
None
):
pattern
=
self
.
spatial_2d_padding
(
inputs
,
padding
=
self
.
padding
,
data_format
=
self
.
data_format
)
return
tf
.
pad
(
inputs
,
pattern
,
'
REFLECT
'
)
if
__name__
==
'
__main__
'
:
from
keras.models
import
Model
from
keras.layers
import
Conv2D
,
Flatten
,
Dense
,
Input
x
=
np
.
array
(
range
(
2000
)).
reshape
(
-
1
,
10
,
10
,
1
)
y
=
x
.
mean
(
axis
=
(
1
,
2
))
x_input
=
Input
(
shape
=
x
.
shape
[
1
:])
x_out
=
ReflectionPadding2D
(
padding
=
(
1
,
1
))(
x_input
)
print
(
x_out
.
get_shape
())
x_out
=
Conv2D
(
10
,
kernel_size
=
(
3
,
3
),
activation
=
'
relu
'
)(
x_out
)
x_out
=
Flatten
()(
x_out
)
x_out
=
Dense
(
1
,
activation
=
'
linear
'
)(
x_out
)
model
=
Model
(
inputs
=
x_input
,
outputs
=
x_out
)
model
.
compile
(
'
adam
'
,
loss
=
'
mse
'
)
model
.
summary
()
hist
=
model
.
fit
(
x
,
y
,
epochs
=
10
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment