Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
33940965
Commit
33940965
authored
4 years ago
by
leufen1
Browse files
Options
Downloads
Patches
Plain Diff
first CNN class try
parent
a2d9d124
No related branches found
No related tags found
5 merge requests
!319
add all changes of dev into release v1.4.0 branch
,
!318
Resolve "release v1.4.0"
,
!300
include cnn class
,
!271
Resolve "create CNN model class"
,
!259
Draft: Resolve "WRF-Datahandler should inherit from SingleStationDatahandler"
Pipeline
#62651
passed
4 years ago
Stage: test
Stage: docs
Stage: pages
Stage: deploy
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlair/model_modules/convolutional_networks.py
+113
-0
113 additions, 0 deletions
mlair/model_modules/convolutional_networks.py
with
113 additions
and
0 deletions
mlair/model_modules/convolutional_networks.py
0 → 100644
+
113
−
0
View file @
33940965
__author__
=
"
Lukas Leufen
"
__date__
=
'
2021-02-
'
from
functools
import
reduce
,
partial
from
mlair.model_modules
import
AbstractModelClass
from
mlair.helpers
import
select_from_dict
from
mlair.model_modules.loss
import
var_loss
,
custom_loss
from
mlair.model_modules.advanced_paddings
import
PadUtils
,
Padding2D
,
SymmetricPadding2D
import
keras
class
CNN
(
AbstractModelClass
):
_activation
=
{
"
relu
"
:
keras
.
layers
.
ReLU
,
"
tanh
"
:
partial
(
keras
.
layers
.
Activation
,
"
tanh
"
),
"
sigmoid
"
:
partial
(
keras
.
layers
.
Activation
,
"
sigmoid
"
),
"
linear
"
:
partial
(
keras
.
layers
.
Activation
,
"
linear
"
),
"
selu
"
:
partial
(
keras
.
layers
.
Activation
,
"
selu
"
)}
_initializer
=
{
"
selu
"
:
keras
.
initializers
.
lecun_normal
()}
_optimizer
=
{
"
adam
"
:
keras
.
optimizers
.
adam
}
_regularizer
=
{
"
l1
"
:
keras
.
regularizers
.
l1
,
"
l2
"
:
keras
.
regularizers
.
l2
,
"
l1_l2
"
:
keras
.
regularizers
.
l1_l2
}
_requirements
=
[
"
lr
"
,
"
beta_1
"
,
"
beta_2
"
,
"
epsilon
"
,
"
decay
"
,
"
amsgrad
"
]
def
__init__
(
self
,
input_shape
:
list
,
output_shape
:
list
,
activation
=
"
relu
"
,
activation_output
=
"
linear
"
,
optimizer
=
"
adam
"
,
regularizer
=
None
,
**
kwargs
):
assert
len
(
input_shape
)
==
1
assert
len
(
output_shape
)
==
1
super
().
__init__
(
input_shape
[
0
],
output_shape
[
0
])
# settings
self
.
activation
=
self
.
_set_activation
(
activation
)
self
.
activation_name
=
activation
self
.
activation_output
=
self
.
_set_activation
(
activation_output
)
self
.
activation_output_name
=
activation_output
self
.
kernel_initializer
=
self
.
_initializer
.
get
(
activation
,
"
glorot_uniform
"
)
self
.
kernel_regularizer
=
self
.
_set_regularizer
(
regularizer
,
**
kwargs
)
self
.
optimizer
=
self
.
_set_optimizer
(
optimizer
,
**
kwargs
)
# apply to model
self
.
set_model
()
self
.
set_compile_options
()
self
.
set_custom_objects
(
loss
=
custom_loss
([
keras
.
losses
.
mean_squared_error
,
var_loss
]),
var_loss
=
var_loss
)
def
_set_activation
(
self
,
activation
):
try
:
return
self
.
_activation
.
get
(
activation
.
lower
())
except
KeyError
:
raise
AttributeError
(
f
"
Given activation
{
activation
}
is not supported in this model class.
"
)
def
_set_optimizer
(
self
,
optimizer
,
**
kwargs
):
try
:
opt_name
=
optimizer
.
lower
()
opt
=
self
.
_optimizer
.
get
(
opt_name
)
opt_kwargs
=
{}
if
opt_name
==
"
adam
"
:
opt_kwargs
=
select_from_dict
(
kwargs
,
[
"
lr
"
,
"
beta_1
"
,
"
beta_2
"
,
"
epsilon
"
,
"
decay
"
,
"
amsgrad
"
])
return
opt
(
**
opt_kwargs
)
except
KeyError
:
raise
AttributeError
(
f
"
Given optimizer
{
optimizer
}
is not supported in this model class.
"
)
def
_set_regularizer
(
self
,
regularizer
,
**
kwargs
):
if
regularizer
is
None
or
(
isinstance
(
regularizer
,
str
)
and
regularizer
.
lower
()
==
"
none
"
):
return
None
try
:
reg_name
=
regularizer
.
lower
()
reg
=
self
.
_regularizer
.
get
(
reg_name
)
reg_kwargs
=
{}
if
reg_name
in
[
"
l1
"
,
"
l2
"
]:
reg_kwargs
=
select_from_dict
(
kwargs
,
reg_name
,
remove_none
=
True
)
if
reg_name
in
reg_kwargs
:
reg_kwargs
[
"
l
"
]
=
reg_kwargs
.
pop
(
reg_name
)
elif
reg_name
==
"
l1_l2
"
:
reg_kwargs
=
select_from_dict
(
kwargs
,
[
"
l1
"
,
"
l2
"
],
remove_none
=
True
)
return
reg
(
**
reg_kwargs
)
except
KeyError
:
raise
AttributeError
(
f
"
Given regularizer
{
regularizer
}
is not supported in this model class.
"
)
def
set_model
(
self
):
"""
Build the model.
"""
x_input
=
keras
.
layers
.
Input
(
shape
=
self
.
_input_shape
)
kernel
=
(
1
,
1
)
pad_size
=
PadUtils
.
get_padding_for_same
(
kernel
)
x_in
=
Padding2D
(
"
SymPad2D
"
)(
padding
=
pad_size
,
name
=
"
SymPad
"
)(
x_input
)
x_in
=
keras
.
layers
.
Conv2D
(
filters
=
16
,
kernel_size
=
kernel
,
kernel_initializer
=
self
.
kernel_initializer
,
kernel_regularizer
=
self
.
kernel_regularizer
)(
x_in
)
x_in
=
self
.
activation
()(
x_in
)
x_in
=
keras
.
layers
.
Conv2D
(
filters
=
32
,
kernel_size
=
kernel
,
kernel_initializer
=
self
.
kernel_initializer
,
kernel_regularizer
=
self
.
kernel_regularizer
)(
x_in
)
x_in
=
self
.
activation
()(
x_in
)
x_in
=
Padding2D
(
"
SymPad2D
"
)(
padding
=
pad_size
,
name
=
"
SymPad
"
)(
x_in
)
x_in
=
keras
.
layers
.
Conv2D
(
filters
=
64
,
kernel_size
=
kernel
,
kernel_initializer
=
self
.
kernel_initializer
,
kernel_regularizer
=
self
.
kernel_regularizer
)(
x_in
)
x_in
=
self
.
activation
()(
x_in
)
x_in
=
keras
.
layers
.
Flatten
()(
x_in
)
x_in
=
keras
.
layers
.
Dense
(
64
,
kernel_initializer
=
self
.
kernel_initializer
,
kernel_regularizer
=
self
.
kernel_regularizer
)(
x_in
)
x_in
=
self
.
activation
()(
x_in
)
x_in
=
keras
.
layers
.
Dense
(
16
,
kernel_initializer
=
self
.
kernel_initializer
,
kernel_regularizer
=
self
.
kernel_regularizer
)(
x_in
)
x_in
=
self
.
activation
()(
x_in
)
x_in
=
keras
.
layers
.
Dense
(
self
.
_output_shape
)(
x_in
)
out
=
self
.
activation_output
(
name
=
f
"
{
self
.
activation_output_name
}
_output
"
)(
x_in
)
self
.
model
=
keras
.
Model
(
inputs
=
x_input
,
outputs
=
[
out
])
def
set_compile_options
(
self
):
self
.
compile_options
=
{
"
loss
"
:
[
custom_loss
([
keras
.
losses
.
mean_squared_error
,
var_loss
])],
"
metrics
"
:
[
"
mse
"
,
"
mae
"
,
var_loss
]}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment