Skip to content
Snippets Groups Projects
Commit 64f34c0e authored by Falco Weichselbaum's avatar Falco Weichselbaum
Browse files

'adam' to 'Adam' fix

parent a85b25c6
Branches
Tags
3 merge requests!413update release branch,!412Resolve "release v2.0.0",!335Resolve "upgrade code to TensorFlow V2"
Pipeline #81466 failed
...@@ -257,7 +257,7 @@ class _ZeroPadding(Layer): ...@@ -257,7 +257,7 @@ class _ZeroPadding(Layer):
self.rank = len(padding) self.rank = len(padding)
self.padding = padding self.padding = padding
self.data_format = normalize_data_format(data_format) self.data_format = normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=self.rank + 2) self.input_spec = tf.keras.layers.InputSpec(ndim=self.rank + 2)
super(_ZeroPadding, self).__init__(**kwargs) super(_ZeroPadding, self).__init__(**kwargs)
def call(self, inputs): def call(self, inputs):
......
...@@ -346,7 +346,7 @@ class MyTowerModel(AbstractModelClass): ...@@ -346,7 +346,7 @@ class MyTowerModel(AbstractModelClass):
self.model = keras.Model(inputs=X_input, outputs=[out_main]) self.model = keras.Model(inputs=X_input, outputs=[out_main])
def set_compile_options(self): def set_compile_options(self):
self.optimizer = keras.optimizers.adam(lr=self.initial_lr) self.optimizer = keras.optimizers.Adam(lr=self.initial_lr)
self.compile_options = {"loss": [keras.losses.mean_squared_error], "metrics": ["mse"]} self.compile_options = {"loss": [keras.losses.mean_squared_error], "metrics": ["mse"]}
...@@ -457,7 +457,7 @@ class IntelliO3_ts_architecture(AbstractModelClass): ...@@ -457,7 +457,7 @@ class IntelliO3_ts_architecture(AbstractModelClass):
self.model = keras.Model(inputs=X_input, outputs=[out_minor1, out_main]) self.model = keras.Model(inputs=X_input, outputs=[out_minor1, out_main])
def set_compile_options(self): def set_compile_options(self):
self.compile_options = {"optimizer": keras.optimizers.adam(lr=self.initial_lr, amsgrad=True), self.compile_options = {"optimizer": keras.optimizers.Adam(lr=self.initial_lr, amsgrad=True),
"loss": [l_p_loss(4), keras.losses.mean_squared_error], "loss": [l_p_loss(4), keras.losses.mean_squared_error],
"metrics": ['mse'], "metrics": ['mse'],
"loss_weights": [.01, .99] "loss_weights": [.01, .99]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment