Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
68b40993
Commit
68b40993
authored
Jan 20, 2020
by
lukas leufen
Browse files
Options
Downloads
Plain Diff
include bug fix /close
#6
parents
c7621247
bf0f2d3c
No related branches found
No related tags found
2 merge requests
!37
include new development
,
!25
fixed bug: make prediction with correct dims
Pipeline
#28448
passed
Jan 20, 2020
Stage: test
Stage: pages
Stage: deploy
Changes
3
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/model_modules/model_class.py
+85
-0
85 additions, 0 deletions
src/model_modules/model_class.py
src/run_modules/model_setup.py
+3
-2
3 additions, 2 deletions
src/run_modules/model_setup.py
src/run_modules/post_processing.py
+17
-1
17 additions, 1 deletion
src/run_modules/post_processing.py
with
105 additions
and
3 deletions
src/model_modules/model_class.py
+
85
−
0
View file @
68b40993
...
...
@@ -154,3 +154,88 @@ class MyLittleModel(AbstractModelClass):
"""
self
.
loss
=
keras
.
losses
.
mean_squared_error
class
MyBranchedModel
(
AbstractModelClass
):
"""
A customised model
with a 1x1 Conv, and 4 Dense layers (64, 32, 16, window_lead_time), where the last layer is the
output layer depending on the window_lead_time parameter. Dropout is used between the Convolution and the first
Dense layer.
"""
def
__init__
(
self
,
window_history_size
,
window_lead_time
,
channels
):
"""
Sets model and loss depending on the given arguments.
:param activation: activation function
:param window_history_size: number of historical time steps included in the input data
:param channels: number of variables used in input data
:param regularizer: <not used here>
:param dropout_rate: dropout rate used in the model [0, 1)
:param window_lead_time: number of time steps to forecast in the output layer
"""
super
().
__init__
()
# settings
self
.
window_history_size
=
window_history_size
self
.
window_lead_time
=
window_lead_time
self
.
channels
=
channels
self
.
dropout_rate
=
0.1
self
.
regularizer
=
keras
.
regularizers
.
l2
(
0.1
)
self
.
initial_lr
=
1e-2
self
.
optimizer
=
keras
.
optimizers
.
SGD
(
lr
=
self
.
initial_lr
,
momentum
=
0.9
)
self
.
lr_decay
=
helpers
.
LearningRateDecay
(
base_lr
=
self
.
initial_lr
,
drop
=
.
94
,
epochs_drop
=
10
)
self
.
epochs
=
2
self
.
batch_size
=
int
(
256
)
self
.
activation
=
keras
.
layers
.
PReLU
# apply to model
self
.
set_model
()
self
.
set_loss
()
def
set_model
(
self
):
"""
Build the model.
:param activation: activation function
:param window_history_size: number of historical time steps included in the input data
:param channels: number of variables used in input data
:param dropout_rate: dropout rate used in the model [0, 1)
:param window_lead_time: number of time steps to forecast in the output layer
:return: built keras model
"""
# add 1 to window_size to include current time step t0
x_input
=
keras
.
layers
.
Input
(
shape
=
(
self
.
window_history_size
+
1
,
1
,
self
.
channels
))
x_in
=
keras
.
layers
.
Conv2D
(
32
,
(
1
,
1
),
padding
=
'
same
'
,
name
=
'
{}_Conv_1x1
'
.
format
(
"
major
"
))(
x_input
)
x_in
=
self
.
activation
(
name
=
'
{}_conv_act
'
.
format
(
"
major
"
))(
x_in
)
x_in
=
keras
.
layers
.
Flatten
(
name
=
'
{}
'
.
format
(
"
major
"
))(
x_in
)
x_in
=
keras
.
layers
.
Dropout
(
self
.
dropout_rate
,
name
=
'
{}_Dropout_1
'
.
format
(
"
major
"
))(
x_in
)
x_in
=
keras
.
layers
.
Dense
(
64
,
name
=
'
{}_Dense_64
'
.
format
(
"
major
"
))(
x_in
)
x_in
=
self
.
activation
()(
x_in
)
out_minor_1
=
keras
.
layers
.
Dense
(
self
.
window_lead_time
,
name
=
'
{}_Dense
'
.
format
(
"
minor_1
"
))(
x_in
)
out_minor_1
=
self
.
activation
()(
out_minor_1
)
x_in
=
keras
.
layers
.
Dense
(
32
,
name
=
'
{}_Dense_32
'
.
format
(
"
major
"
))(
x_in
)
x_in
=
self
.
activation
()(
x_in
)
out_minor_2
=
keras
.
layers
.
Dense
(
self
.
window_lead_time
,
name
=
'
{}_Dense
'
.
format
(
"
minor_2
"
))(
x_in
)
out_minor_2
=
self
.
activation
()(
out_minor_2
)
x_in
=
keras
.
layers
.
Dense
(
16
,
name
=
'
{}_Dense_16
'
.
format
(
"
major
"
))(
x_in
)
x_in
=
self
.
activation
()(
x_in
)
x_in
=
keras
.
layers
.
Dense
(
self
.
window_lead_time
,
name
=
'
{}_Dense
'
.
format
(
"
major
"
))(
x_in
)
out_main
=
self
.
activation
()(
x_in
)
self
.
model
=
keras
.
Model
(
inputs
=
x_input
,
outputs
=
[
out_minor_1
,
out_minor_2
,
out_main
])
def
set_loss
(
self
):
"""
Set the loss
:return: loss function
"""
self
.
loss
=
[
keras
.
losses
.
mean_absolute_error
]
+
[
keras
.
losses
.
mean_squared_error
]
+
\
[
keras
.
losses
.
mean_squared_error
]
This diff is collapsed.
Click to expand it.
src/run_modules/model_setup.py
+
3
−
2
View file @
68b40993
...
...
@@ -15,7 +15,8 @@ from src.run_modules.run_environment import RunEnvironment
from
src.helpers
import
l_p_loss
,
LearningRateDecay
from
src.model_modules.inception_model
import
InceptionModelBase
from
src.model_modules.flatten
import
flatten_tail
from
src.model_modules.model_class
import
MyLittleModel
# from src.model_modules.model_class import MyBranchedModel as MyModel
from
src.model_modules.model_class
import
MyLittleModel
as
MyModel
class
ModelSetup
(
RunEnvironment
):
...
...
@@ -76,7 +77,7 @@ class ModelSetup(RunEnvironment):
def
build_model
(
self
):
args_list
=
[
"
window_history_size
"
,
"
window_lead_time
"
,
"
channels
"
]
args
=
self
.
data_store
.
create_args_dict
(
args_list
,
self
.
scope
)
self
.
model
=
My
Little
Model
(
**
args
)
self
.
model
=
MyModel
(
**
args
)
self
.
get_model_settings
()
def
get_model_settings
(
self
):
...
...
This diff is collapsed.
Click to expand it.
src/run_modules/post_processing.py
+
17
−
1
View file @
68b40993
...
...
@@ -109,9 +109,25 @@ class PostProcessing(RunEnvironment):
return
persistence_prediction
def
_create_nn_forecast
(
self
,
input_data
,
nn_prediction
,
mean
,
std
,
transformation_method
):
"""
create the nn forecast for given input data. Inverse transformation is applied to the forecast to get the output
in the original space. Furthermore, only the output of the main branch is returned (not all minor branches, if
the network has multiple output branches). The main branch is defined to be the last entry of all outputs.
:param input_data:
:param nn_prediction:
:param mean:
:param std:
:param transformation_method:
:return:
"""
tmp_nn
=
self
.
model
.
predict
(
input_data
)
tmp_nn
=
statistics
.
apply_inverse_transformation
(
tmp_nn
,
mean
,
std
,
transformation_method
)
if
tmp_nn
.
ndim
==
3
:
nn_prediction
.
values
=
np
.
swapaxes
(
np
.
expand_dims
(
tmp_nn
[
-
1
,
...],
axis
=
1
),
2
,
0
)
elif
tmp_nn
.
ndim
==
2
:
nn_prediction
.
values
=
np
.
swapaxes
(
np
.
expand_dims
(
tmp_nn
,
axis
=
1
),
2
,
0
)
else
:
raise
NotImplementedError
(
f
"
Number of dimension of model output must be 2 or 3, but not
{
tmp_nn
.
dims
}
.
"
)
return
nn_prediction
@staticmethod
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment