Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
72259773
Commit
72259773
authored
5 years ago
by
lukas leufen
Browse files
Options
Downloads
Patches
Plain Diff
current status, started to fix time shift
parent
0e36df1e
No related branches found
No related tags found
2 merge requests
!59
Develop
,
!57
Lukas issue 064 bug check time axis
Pipeline
#31190
passed
5 years ago
Stage: test
Stage: pages
Stage: deploy
Changes
2
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/plotting/postprocessing_plotting.py
+7
-6
7 additions, 6 deletions
src/plotting/postprocessing_plotting.py
src/run_modules/post_processing.py
+13
-6
13 additions, 6 deletions
src/run_modules/post_processing.py
with
20 additions
and
12 deletions
src/plotting/postprocessing_plotting.py
+
7
−
6
View file @
72259773
...
...
@@ -639,15 +639,16 @@ class PlotTimeSeries(RunEnvironment):
def
_plot_ahead
(
self
,
ax
,
data
):
color
=
sns
.
color_palette
(
"
Blues_d
"
,
self
.
_window_lead_time
).
as_hex
()
for
ahead
in
data
.
coords
[
"
ahead
"
].
values
:
plot_data
=
data
.
sel
(
type
=
"
CNN
"
,
ahead
=
ahead
).
drop
([
"
type
"
,
"
ahead
"
]).
squeeze
()
index
=
plot_data
.
index
+
np
.
timedelta64
(
int
(
ahead
),
self
.
_sampling
)
plot_data
=
data
.
sel
(
type
=
"
CNN
"
,
ahead
=
ahead
).
drop
([
"
type
"
,
"
ahead
"
]).
squeeze
().
shift
(
index
=
ahead
)
label
=
f
"
{
ahead
}{
self
.
_sampling
}
"
ax
.
plot
(
index
,
plot_data
.
values
,
color
=
color
[
ahead
-
1
],
label
=
label
)
ax
.
plot
(
plot_data
,
color
=
color
[
ahead
-
1
],
label
=
label
)
def
_plot_obs
(
self
,
ax
,
data
):
obs_data
=
data
.
sel
(
type
=
"
obs
"
,
ahead
=
1
)
index
=
data
.
index
+
np
.
timedelta64
(
1
,
self
.
_sampling
)
ax
.
plot
(
index
,
obs_data
.
values
,
color
=
matplotlib
.
colors
.
cnames
[
"
green
"
],
label
=
"
obs
"
)
ahead
=
1
obs_data
=
data
.
sel
(
type
=
"
obs
"
,
ahead
=
ahead
).
shift
(
index
=
ahead
)
# index = data.index + np.timedelta64(1, self._sampling)
# ax.plot(index, obs_data.values, color=matplotlib.colors.cnames["green"], label="obs")
ax
.
plot
(
obs_data
,
color
=
matplotlib
.
colors
.
cnames
[
"
green
"
],
label
=
"
obs
"
)
@staticmethod
def
_get_time_range
(
data
):
...
...
This diff is collapsed.
Click to expand it.
src/run_modules/post_processing.py
+
13
−
6
View file @
72259773
...
...
@@ -162,7 +162,7 @@ class PostProcessing(RunEnvironment):
for
normalised
in
[
True
,
False
]:
# create empty arrays
nn_prediction
,
persistence_prediction
,
ols_prediction
=
self
.
_create_empty_prediction_arrays
(
data
,
count
=
3
)
nn_prediction
,
persistence_prediction
,
ols_prediction
,
observation
=
self
.
_create_empty_prediction_arrays
(
data
,
count
=
4
)
# nn forecast
nn_prediction
=
self
.
_create_nn_forecast
(
input_data
,
nn_prediction
,
mean
,
std
,
transformation_method
,
normalised
)
...
...
@@ -175,7 +175,7 @@ class PostProcessing(RunEnvironment):
ols_prediction
=
self
.
_create_ols_forecast
(
input_data
,
ols_prediction
,
mean
,
std
,
transformation_method
,
normalised
)
# observation
observation
=
self
.
_create_observation
(
data
,
N
on
e
,
mean
,
std
,
transformation_method
,
normalised
)
observation
=
self
.
_create_observation
(
data
,
observati
on
,
mean
,
std
,
transformation_method
,
normalised
)
# merge all predictions
full_index
=
self
.
create_fullindex
(
data
.
data
.
indexes
[
'
datetime
'
],
self
.
_get_frequency
())
...
...
@@ -195,12 +195,19 @@ class PostProcessing(RunEnvironment):
getter
=
{
"
daily
"
:
"
1D
"
,
"
hourly
"
:
"
1H
"
}
return
getter
.
get
(
self
.
_sampling
,
None
)
@staticmethod
def
_create_observation
(
data
,
_
,
mean
,
std
,
transformation_method
,
normalised
):
def
_create_observation
(
self
,
data
,
observation
,
mean
,
std
,
transformation_method
,
normalised
):
obs
=
data
.
observation
.
copy
()
if
not
normalised
:
obs
=
statistics
.
apply_inverse_transformation
(
obs
,
mean
,
std
,
transformation_method
)
return
obs
window_lead_time
=
self
.
data_store
.
get
(
"
window_lead_time
"
,
"
general
"
)
obs_w
=
[]
for
w
in
range
(
window_lead_time
):
obs_w
.
append
(
obs
.
shift
(
datetime
=-
(
w
+
1
)))
if
observation
is
None
:
observation
=
data
.
label
.
copy
()
observation
.
values
=
np
.
concatenate
(
obs_w
,
axis
=
0
)
return
observation
def
_create_ols_forecast
(
self
,
input_data
,
ols_prediction
,
mean
,
std
,
transformation_method
,
normalised
):
tmp_ols
=
self
.
ols_model
.
predict
(
input_data
)
...
...
@@ -212,7 +219,7 @@ class PostProcessing(RunEnvironment):
return
ols_prediction
def
_create_persistence_forecast
(
self
,
data
,
persistence_prediction
,
mean
,
std
,
transformation_method
,
normalised
):
tmp_persi
=
data
.
observation
.
copy
().
sel
({
'
window
'
:
0
})
tmp_persi
=
data
.
observation
.
copy
().
sel
({
'
window
'
:
0
})
#.shift(datetime=1)
if
not
normalised
:
tmp_persi
=
statistics
.
apply_inverse_transformation
(
tmp_persi
,
mean
,
std
,
transformation_method
)
window_lead_time
=
self
.
data_store
.
get
(
"
window_lead_time
"
,
"
general
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment