Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
72429383
Commit
72429383
authored
5 years ago
by
lukas leufen
Browse files
Options
Downloads
Patches
Plain Diff
refac time series plot and add sampling rate
parent
d07cf2ca
No related branches found
No related tags found
2 merge requests
!37
include new development
,
!36
include using of hourly data
Pipeline
#29312
passed
5 years ago
Stage: test
Stage: pages
Stage: deploy
Changes
2
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/plotting/postprocessing_plotting.py
+65
-21
65 additions, 21 deletions
src/plotting/postprocessing_plotting.py
src/run_modules/post_processing.py
+8
-3
8 additions, 3 deletions
src/run_modules/post_processing.py
with
73 additions
and
24 deletions
src/plotting/postprocessing_plotting.py
+
65
−
21
View file @
72429383
...
...
@@ -481,14 +481,23 @@ class PlotCompetitiveSkillScore(RunEnvironment):
class
PlotTimeSeries
(
RunEnvironment
):
def
__init__
(
self
,
stations
:
List
,
data_path
:
str
,
name
:
str
,
window_lead_time
:
int
=
None
,
plot_folder
:
str
=
"
.
"
):
def
__init__
(
self
,
stations
:
List
,
data_path
:
str
,
name
:
str
,
window_lead_time
:
int
=
None
,
plot_folder
:
str
=
"
.
"
,
sampling
=
"
daily
"
):
super
().
__init__
()
self
.
_data_path
=
data_path
self
.
_data_name
=
name
self
.
_stations
=
stations
self
.
_window_lead_time
=
self
.
_get_window_lead_time
(
window_lead_time
)
self
.
_sampling
=
self
.
_get_sampling
(
sampling
)
self
.
_plot
(
plot_folder
)
@staticmethod
def
_get_sampling
(
sampling
):
if
sampling
==
"
daily
"
:
return
"
D
"
elif
sampling
==
"
hourly
"
:
return
"
h
"
def
_get_window_lead_time
(
self
,
window_lead_time
:
int
):
"""
Extract the lead time from data and arguments. If window_lead_time is not given, extract this information from
...
...
@@ -509,31 +518,66 @@ class PlotTimeSeries(RunEnvironment):
return
data
.
sel
(
type
=
[
"
CNN
"
,
"
orig
"
])
def
_plot
(
self
,
plot_folder
):
pdf_pages
=
self
.
_
sav
e_pdf_pages
(
plot_folder
)
pdf_pages
=
self
.
_
creat
e_pdf_pages
(
plot_folder
)
start
,
end
=
self
.
_get_time_range
(
self
.
_load_data
(
self
.
_stations
[
0
]))
color_palette
=
[
matplotlib
.
colors
.
cnames
[
"
green
"
]]
+
sns
.
color_palette
(
"
Blues_d
"
,
self
.
_window_lead_time
).
as_hex
()
for
pos
,
station
in
enumerate
(
self
.
_stations
):
data
=
self
.
_load_data
(
station
)
f
,
axes
=
plt
.
subplots
(
end
-
start
+
1
,
sharey
=
True
,
figsize
=
(
40
,
20
)
)
f
ig
,
axes
,
factor
=
self
.
_create_subplots
(
start
,
end
)
nan_list
=
[]
for
i
in
range
(
end
-
start
+
1
):
data_year
=
data
.
sel
(
index
=
f
"
{
start
+
i
}
"
)
orig_data
=
data_year
.
sel
(
type
=
"
orig
"
,
ahead
=
1
).
values
axes
[
i
].
plot
(
data_year
.
index
+
np
.
timedelta64
(
1
,
"
D
"
),
orig_data
,
color
=
color_palette
[
0
],
label
=
"
orig
"
)
for
ahead
in
data
.
coords
[
"
ahead
"
].
values
:
plot_data
=
data_year
.
sel
(
type
=
"
CNN
"
,
ahead
=
ahead
).
drop
([
"
type
"
,
"
ahead
"
]).
squeeze
()
axes
[
i
].
plot
(
plot_data
.
index
+
np
.
timedelta64
(
int
(
ahead
),
"
D
"
),
plot_data
.
values
,
color
=
color_palette
[
ahead
],
label
=
f
"
{
ahead
}
d
"
)
if
np
.
isnan
(
orig_data
).
all
():
nan_list
.
append
(
i
)
for
i_year
in
range
(
end
-
start
+
1
):
data_year
=
data
.
sel
(
index
=
f
"
{
start
+
i_year
}
"
)
for
i_half_of_year
in
range
(
factor
):
pos
=
2
*
i_year
+
i_half_of_year
plot_data
=
self
.
_create_plot_data
(
data_year
,
factor
,
i_half_of_year
)
self
.
_plot_orig
(
axes
[
pos
],
plot_data
)
self
.
_plot_ahead
(
axes
[
pos
],
plot_data
)
if
np
.
isnan
(
plot_data
.
values
).
all
():
nan_list
.
append
(
pos
)
self
.
_clean_up_axes
(
nan_list
,
axes
,
fig
)
self
.
_save_page
(
station
,
pdf_pages
)
pdf_pages
.
close
()
plt
.
close
(
'
all
'
)
@staticmethod
def
_clean_up_axes
(
nan_list
,
axes
,
fig
):
for
i
in
reversed
(
nan_list
):
f
.
delaxes
(
axes
[
i
])
fig
.
delaxes
(
axes
[
i
])
@staticmethod
def
_save_page
(
station
,
pdf_pages
):
plt
.
suptitle
(
station
)
plt
.
legend
()
plt
.
tight_layout
()
pdf_pages
.
savefig
(
dpi
=
500
)
pdf_pages
.
close
()
plt
.
close
(
'
all
'
)
@staticmethod
def
_create_plot_data
(
data
,
factor
,
running_index
):
if
factor
>
1
:
if
running_index
==
0
:
data
=
data
.
where
(
data
[
"
index.month
"
]
<
7
)
else
:
data
=
data
.
where
(
data
[
"
index.month
"
]
>=
7
)
return
data
def
_create_subplots
(
self
,
start
,
end
):
factor
=
1
if
self
.
_sampling
==
"
h
"
:
factor
=
2
f
,
ax
=
plt
.
subplots
((
end
-
start
+
1
)
*
factor
,
sharey
=
True
,
figsize
=
(
50
,
30
))
return
f
,
ax
,
factor
def
_plot_ahead
(
self
,
ax
,
data
):
color
=
sns
.
color_palette
(
"
Blues_d
"
,
self
.
_window_lead_time
).
as_hex
()
for
ahead
in
data
.
coords
[
"
ahead
"
].
values
:
plot_data
=
data
.
sel
(
type
=
"
CNN
"
,
ahead
=
ahead
).
drop
([
"
type
"
,
"
ahead
"
]).
squeeze
()
index
=
plot_data
.
index
+
np
.
timedelta64
(
int
(
ahead
),
self
.
_sampling
)
label
=
f
"
{
ahead
}{
self
.
_sampling
}
"
ax
.
plot
(
index
,
plot_data
.
values
,
color
=
color
[
ahead
-
1
],
label
=
label
)
def
_plot_orig
(
self
,
ax
,
data
):
orig_data
=
data
.
sel
(
type
=
"
orig
"
,
ahead
=
1
)
index
=
data
.
index
+
np
.
timedelta64
(
1
,
self
.
_sampling
)
ax
.
plot
(
index
,
orig_data
.
values
,
color
=
matplotlib
.
colors
.
cnames
[
"
green
"
],
label
=
"
orig
"
)
@staticmethod
def
_get_time_range
(
data
):
...
...
@@ -542,7 +586,7 @@ class PlotTimeSeries(RunEnvironment):
return
f
(
data
,
min
),
f
(
data
,
max
)
@staticmethod
def
_
sav
e_pdf_pages
(
plot_folder
):
def
_
creat
e_pdf_pages
(
plot_folder
):
"""
Standard save method to store plot locally. The name of this plot is static.
:param plot_folder: path to save the plot
...
...
This diff is collapsed.
Click to expand it.
src/run_modules/post_processing.py
+
8
−
3
View file @
72429383
...
...
@@ -35,6 +35,7 @@ class PostProcessing(RunEnvironment):
self
.
train_val_data
:
DataGenerator
=
self
.
data_store
.
get
(
"
generator
"
,
"
general.train_val
"
)
self
.
plot_path
:
str
=
self
.
data_store
.
get
(
"
plot_path
"
,
"
general
"
)
self
.
target_var
=
self
.
data_store
.
get
(
"
target_var
"
,
"
general
"
)
self
.
_sampling
=
self
.
data_store
.
get
(
"
sampling
"
,
"
general
"
)
self
.
skill_scores
=
None
self
.
_run
()
...
...
@@ -76,7 +77,7 @@ class PostProcessing(RunEnvironment):
PlotClimatologicalSkillScore
(
self
.
skill_scores
[
1
],
plot_folder
=
self
.
plot_path
,
score_only
=
False
,
extra_name_tag
=
"
all_terms_
"
,
model_setup
=
"
CNN
"
)
PlotCompetitiveSkillScore
(
self
.
skill_scores
[
0
],
plot_folder
=
self
.
plot_path
,
model_setup
=
"
CNN
"
)
PlotTimeSeries
(
self
.
test_data
.
stations
,
path
,
r
"
forecasts_%s_test.nc
"
,
plot_folder
=
self
.
plot_path
)
PlotTimeSeries
(
self
.
test_data
.
stations
,
path
,
r
"
forecasts_%s_test.nc
"
,
plot_folder
=
self
.
plot_path
,
sampling
=
self
.
_sampling
)
def
calculate_test_score
(
self
):
test_score
=
self
.
model
.
evaluate_generator
(
generator
=
self
.
test_data_distributed
.
distribute_on_batches
(),
...
...
@@ -93,7 +94,7 @@ class PostProcessing(RunEnvironment):
def
train_ols_model
(
self
):
self
.
ols_model
=
OrdinaryLeastSquaredModel
(
self
.
train_data
)
def
make_prediction
(
self
,
freq
=
"
1D
"
):
def
make_prediction
(
self
):
logging
.
debug
(
"
start make_prediction
"
)
for
i
,
_
in
enumerate
(
self
.
test_data
):
data
=
self
.
test_data
.
get_data_generator
(
i
)
...
...
@@ -118,7 +119,7 @@ class PostProcessing(RunEnvironment):
orig_pred
=
self
.
_create_orig_forecast
(
data
,
None
,
mean
,
std
,
transformation_method
)
# merge all predictions
full_index
=
self
.
create_fullindex
(
data
.
data
.
indexes
[
'
datetime
'
],
freq
)
full_index
=
self
.
create_fullindex
(
data
.
data
.
indexes
[
'
datetime
'
],
self
.
_get_frequency
()
)
all_predictions
=
self
.
create_forecast_arrays
(
full_index
,
list
(
data
.
label
.
indexes
[
'
window
'
]),
CNN
=
nn_prediction
,
persi
=
persistence_prediction
,
...
...
@@ -130,6 +131,10 @@ class PostProcessing(RunEnvironment):
file
=
os
.
path
.
join
(
path
,
f
"
forecasts_
{
data
.
station
[
0
]
}
_test.nc
"
)
all_predictions
.
to_netcdf
(
file
)
def
_get_frequency
(
self
):
getter
=
{
"
daily
"
:
"
1D
"
,
"
hourly
"
:
"
1H
"
}
return
getter
.
get
(
self
.
_sampling
,
None
)
@staticmethod
def
_create_orig_forecast
(
data
,
_
,
mean
,
std
,
transformation_method
):
return
statistics
.
apply_inverse_transformation
(
data
.
label
.
copy
(),
mean
,
std
,
transformation_method
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment