Skip to content
Snippets Groups Projects
Commit 763ddcb0 authored by lukas leufen's avatar lukas leufen
Browse files

introduced model class and used in model_setup.py

parent 535d99e9
No related branches found
No related tags found
2 merge requests!24include recent development,!22model class
Checking pipeline status
__author__ = "Lukas Leufen"
__date__ = '2019-12-12'
from abc import ABC
from typing import Any, Callable
import keras
class AbstractModelClass(ABC):
"""
The AbstractModelClass provides a unified skeleton for any model provided to the machine learning workflow. The
model can always be accessed by calling ModelClass.model or directly by an model method without parsing the model
attribute name (e.g. ModelClass.model.compile -> ModelClass.compile). Beside the model, this class provides the
corresponding loss function.
"""
def __init__(self) -> None:
"""
Predefine internal attributes for model and loss.
"""
self._model = None
self._loss = None
def __getattr__(self, name: str) -> Any:
"""
Is called if __getattribute__ is not able to find requested attribute. Normally, the model class is saved into
a variable like `model = ModelClass()`. To bypass a call like `model.model` to access the _model attribute,
this method tries to search for the named attribute in the self.model namespace and returns this attribute if
available. Therefore, following expression is true: `ModelClass().compile == ModelClass().model.compile` as long
the called attribute/method is not part if the ModelClass itself.
:param name: name of the attribute or method to call
:return: attribute or method from self.model namespace
"""
return self.model.__getattribute__(name)
@property
def model(self) -> keras.Model:
"""
The model property containing a keras.Model instance.
:return: the keras model
"""
return self._model
@property
def loss(self) -> Callable:
"""
The loss property containing a callable loss function. The loss function can be any keras loss or a customised
function. If the loss is a customised function, it must contain the internal loss(y_true, y_pred) function:
def customised_loss(args):
def loss(y_true, y_pred):
return actual_function(y_true, y_pred, args)
return loss
:return: the loss function
"""
return self._loss
class MyLittleModel(AbstractModelClass):
"""
A customised model with a 1x1 Conv, and 4 Dense layers (64, 32, 16, window_lead_time), where the last layer is the
output layer depending on the window_lead_time parameter. Dropout is used between the Convolution and the first
Dense layer.
"""
def __init__(self, activation, window_history_size, channels, regularizer, dropout_rate, window_lead_time):
"""
Sets model and loss depending on the given arguments.
:param activation: activation function
:param window_history_size: number of historical time steps included in the input data
:param channels: number of variables used in input data
:param regularizer: <not used here>
:param dropout_rate: dropout rate used in the model [0, 1)
:param window_lead_time: number of time steps to forecast in the output layer
"""
super().__init__()
self.set_model(activation, window_history_size, channels, dropout_rate, window_lead_time)
self.set_loss()
def set_model(self, activation, window_history_size, channels, dropout_rate, window_lead_time):
"""
Build the model.
:param activation: activation function
:param window_history_size: number of historical time steps included in the input data
:param channels: number of variables used in input data
:param dropout_rate: dropout rate used in the model [0, 1)
:param window_lead_time: number of time steps to forecast in the output layer
:return: built keras model
"""
X_input = keras.layers.Input(shape=(window_history_size + 1, 1, channels)) # add 1 to window_size to include current time step t0
X_in = keras.layers.Conv2D(32, (1, 1), padding='same', name='{}_Conv_1x1'.format("major"))(X_input)
X_in = activation(name='{}_conv_act'.format("major"))(X_in)
X_in = keras.layers.Flatten(name='{}'.format("major"))(X_in)
X_in = keras.layers.Dropout(dropout_rate, name='{}_Dropout_1'.format("major"))(X_in)
X_in = keras.layers.Dense(64, name='{}_Dense_64'.format("major"))(X_in)
X_in = activation()(X_in)
X_in = keras.layers.Dense(32, name='{}_Dense_32'.format("major"))(X_in)
X_in = activation()(X_in)
X_in = keras.layers.Dense(16, name='{}_Dense_16'.format("major"))(X_in)
X_in = activation()(X_in)
X_in = keras.layers.Dense(window_lead_time, name='{}_Dense'.format("major"))(X_in)
out_main = activation()(X_in)
self._model = keras.Model(inputs=X_input, outputs=[out_main])
def set_loss(self):
"""
Set the loss
:return: loss function
"""
self._loss = keras.losses.mean_squared_error
......@@ -15,6 +15,7 @@ from src.modules.run_environment import RunEnvironment
from src.helpers import l_p_loss, LearningRateDecay
from src.inception_model import InceptionModelBase
from src.flatten import flatten_tail
from src.model_modules.model_class import MyLittleModel
class ModelSetup(RunEnvironment):
......@@ -53,7 +54,7 @@ class ModelSetup(RunEnvironment):
def compile_model(self):
optimizer = self.data_store.get("optimizer", self.scope)
loss = self.data_store.get("loss", self.scope)
loss = self.model.loss
self.model.compile(optimizer=optimizer, loss=loss, metrics=["mse", "mae"])
self.data_store.put("model", self.model, self.scope)
......@@ -71,7 +72,7 @@ class ModelSetup(RunEnvironment):
def build_model(self):
args_list = ["activation", "window_history_size", "channels", "regularizer", "dropout_rate", "window_lead_time"]
args = self.data_store.create_args_dict(args_list, self.scope)
self.model = my_little_model(**args)
self.model = MyLittleModel(**args)
def plot_model(self): # pragma: no cover
with tf.device("/cpu:0"):
......@@ -109,10 +110,6 @@ class ModelSetup(RunEnvironment):
activation = keras.layers.PReLU # ELU #LeakyReLU keras.activations.tanh #
self.data_store.put("activation", activation, self.scope)
# set los
loss_all = my_little_loss()
self.data_store.put("loss", loss_all, self.scope)
def my_loss():
loss = l_p_loss(4)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment