Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
8e25915c
Commit
8e25915c
authored
5 years ago
by
lukas leufen
Browse files
Options
Downloads
Patches
Plain Diff
first model setup without any testing
parent
cf2d78fa
No related branches found
Branches containing commit
No related tags found
Tags containing commit
2 merge requests
!24
include recent development
,
!18
include setup ml model
Pipeline
#26750
passed
5 years ago
Stage: test
Stage: pages
Stage: deploy
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/flatten.py
+32
-0
32 additions, 0 deletions
src/flatten.py
src/modules/model_setup.py
+172
-0
172 additions, 0 deletions
src/modules/model_setup.py
with
204 additions
and
0 deletions
src/flatten.py
0 → 100644
+
32
−
0
View file @
8e25915c
__author__
=
"
Lukas Leufen
"
__date__
=
'
2019-12-02
'
import
keras
from
typing
import
Callable
def
flatten_tail
(
input_X
:
keras
.
layers
,
name
:
str
,
bound_weight
:
bool
=
False
,
dropout_rate
:
float
=
0.0
,
window_lead_time
:
int
=
4
,
activation
:
Callable
=
keras
.
activations
.
relu
,
reduction_filter
:
int
=
64
,
first_dense
:
int
=
64
):
X_in
=
keras
.
layers
.
Conv2D
(
reduction_filter
,
(
1
,
1
),
padding
=
'
same
'
,
name
=
'
{}_Conv_1x1
'
.
format
(
name
))(
input_X
)
X_in
=
activation
(
name
=
'
{}_conv_act
'
.
format
(
name
))(
X_in
)
X_in
=
keras
.
layers
.
Flatten
(
name
=
'
{}
'
.
format
(
name
))(
X_in
)
X_in
=
keras
.
layers
.
Dropout
(
dropout_rate
,
name
=
'
{}_Dropout_1
'
.
format
(
name
))(
X_in
)
X_in
=
keras
.
layers
.
Dense
(
first_dense
,
kernel_regularizer
=
keras
.
regularizers
.
l2
(
0.01
),
name
=
'
{}_Dense_1
'
.
format
(
name
))(
X_in
)
if
bound_weight
:
X_in
=
keras
.
layers
.
Activation
(
'
tanh
'
)(
X_in
)
else
:
try
:
X_in
=
activation
(
name
=
'
{}_act
'
.
format
(
name
))(
X_in
)
except
:
X_in
=
activation
()(
X_in
)
X_in
=
keras
.
layers
.
Dropout
(
dropout_rate
,
name
=
'
{}_Dropout_2
'
.
format
(
name
))(
X_in
)
out
=
keras
.
layers
.
Dense
(
window_lead_time
,
activation
=
'
linear
'
,
kernel_regularizer
=
keras
.
regularizers
.
l2
(
0.01
),
name
=
'
{}_Dense_2
'
.
format
(
name
))(
X_in
)
return
out
This diff is collapsed.
Click to expand it.
src/modules/model_setup.py
0 → 100644
+
172
−
0
View file @
8e25915c
__author__
=
"
Lukas Leufen
"
__date__
=
'
2019-12-02
'
import
keras
from
keras
import
losses
,
layers
from
keras.callbacks
import
ModelCheckpoint
from
keras.regularizers
import
l2
from
keras.optimizers
import
Adam
,
SGD
import
tensorflow
as
tf
import
logging
from
src.modules.run_environment
import
RunEnvironment
from
src.helpers
import
l_p_loss
,
LearningRateDecay
from
src.inception_model
import
InceptionModelBase
from
src.flatten
import
flatten_tail
class
ModelSetup
(
RunEnvironment
):
def
__init__
(
self
):
# create run framework
super
().
__init__
()
self
.
model
=
None
self
.
model_name
=
self
.
data_store
.
get
(
"
experiment_name
"
,
"
general
"
)
+
"
model-best.h5
"
self
.
scope
=
"
general.model
"
def
_run
(
self
):
# create checkpoint
self
.
_set_checkpoint
()
# set all model settings
self
.
my_model_settings
()
# build model graph using settings from my_model_settings()
self
.
build_model
()
# plot model structure
self
.
plot_model
()
# load weights if no training shall be performed
if
self
.
data_store
.
get
(
"
trainable
"
,
self
.
scope
)
is
False
:
self
.
load_weights
()
# compile model
self
.
compile_model
()
def
compile_model
(
self
):
optimizer
=
self
.
data_store
.
get
(
"
optimizer
"
,
self
.
scope
)
loss
=
self
.
data_store
.
get
(
"
loss
"
,
self
.
scope
)
self
.
model
.
compile
(
optimizer
=
optimizer
,
loss
=
loss
,
metrics
=
[
"
mse
"
,
"
mae
"
])
def
_set_checkpoint
(
self
):
ModelCheckpoint
(
self
.
model_name
,
verbose
=
1
,
monitor
=
'
val_loss
'
,
save_best_only
=
True
,
mode
=
'
auto
'
)
def
load_weights
(
self
):
#try:
logging
.
debug
(
'
reload weights...
'
)
self
.
model
.
load_weights
(
self
.
model_name
)
#except:
# print('no weights to reload...')
def
build_model
(
self
):
args_list
=
[
"
activation
"
,
"
window_size
"
,
"
channels
"
,
"
regularizer
"
,
"
dropout_rate
"
,
"
window_lead_time
"
]
args
=
self
.
data_store
.
create_args_dict
(
args_list
,
self
.
scope
)
self
.
model
=
my_model
(
**
args
)
def
plot_model
(
self
):
with
tf
.
device
(
"
/cpu:0
"
):
file_name
=
self
.
data_store
.
get
(
"
experiment_name
"
,
"
general
"
)
+
"
model.pdf
"
keras
.
utils
.
plot_model
(
self
.
model
,
to_file
=
file_name
,
show_shapes
=
True
,
show_layer_names
=
True
)
def
my_model_settings
(
self
):
scope
=
"
general.model
"
# channels
X
,
y
=
self
.
data_store
.
get
(
"
generator
"
,
"
general.train
"
)[
0
]
channels
=
X
.
shape
[
-
1
]
# input variables
self
.
data_store
.
put
(
"
channels
"
,
channels
,
scope
)
# dropout
self
.
data_store
.
put
(
"
dropout_rate
"
,
0.1
,
scope
)
# regularizer
self
.
data_store
.
put
(
"
regularizer
"
,
l2
(
0.1
),
scope
)
# learning rate
initial_lr
=
1e-2
self
.
data_store
.
put
(
"
initial_lr
"
,
initial_lr
,
scope
)
optimizer
=
SGD
(
lr
=
initial_lr
,
momentum
=
0.9
)
# optimizer=Adam(lr=initial_lr, amsgrad=True)
self
.
data_store
.
put
(
"
optimizer
"
,
optimizer
,
scope
)
self
.
data_store
.
put
(
"
lr_decay
"
,
LearningRateDecay
(
base_lr
=
initial_lr
,
drop
=
.
94
,
epochs_drop
=
10
),
scope
)
# learning settings
self
.
data_store
.
put
(
"
epochs
"
,
2
,
scope
)
self
.
data_store
.
put
(
"
batch_size
"
,
int
(
256
),
scope
)
# activation
activation
=
layers
.
PReLU
# ELU #LeakyReLU keras.activations.tanh #
self
.
data_store
.
put
(
"
activation
"
,
activation
,
scope
)
# set los
loss_all
=
my_loss
()
self
.
data_store
.
put
(
"
loss
"
,
loss_all
,
scope
)
def
my_loss
():
loss
=
l_p_loss
(
4
)
keras_loss
=
losses
.
mean_squared_error
loss_all
=
[
loss
]
+
[
keras_loss
]
return
loss_all
def
my_model
(
activation
,
window_size
,
channels
,
regularizer
,
dropout_rate
,
window_lead_time
):
conv_settings_dict1
=
{
'
tower_1
'
:
{
'
reduction_filter
'
:
8
,
'
tower_filter
'
:
8
*
2
,
'
tower_kernel
'
:
(
3
,
1
),
'
activation
'
:
activation
},
'
tower_2
'
:
{
'
reduction_filter
'
:
8
,
'
tower_filter
'
:
8
*
2
,
'
tower_kernel
'
:
(
5
,
1
),
'
activation
'
:
activation
},
'
tower_3
'
:
{
'
reduction_filter
'
:
8
,
'
tower_filter
'
:
8
*
2
,
'
tower_kernel
'
:
(
1
,
1
),
'
activation
'
:
activation
},
}
pool_settings_dict1
=
{
'
pool_kernel
'
:
(
3
,
1
),
'
tower_filter
'
:
8
*
2
,
'
activation
'
:
activation
}
conv_settings_dict2
=
{
'
tower_1
'
:
{
'
reduction_filter
'
:
8
*
2
,
'
tower_filter
'
:
16
*
2
*
2
,
'
tower_kernel
'
:
(
3
,
1
),
'
activation
'
:
activation
},
'
tower_2
'
:
{
'
reduction_filter
'
:
8
*
2
,
'
tower_filter
'
:
16
*
2
*
2
,
'
tower_kernel
'
:
(
5
,
1
),
'
activation
'
:
activation
},
'
tower_3
'
:
{
'
reduction_filter
'
:
8
*
2
,
'
tower_filter
'
:
16
*
2
*
2
,
'
tower_kernel
'
:
(
1
,
1
),
'
activation
'
:
activation
},
}
pool_settings_dict2
=
{
'
pool_kernel
'
:
(
3
,
1
),
'
tower_filter
'
:
16
,
'
activation
'
:
activation
}
conv_settings_dict3
=
{
'
tower_1
'
:
{
'
reduction_filter
'
:
16
*
4
,
'
tower_filter
'
:
32
*
2
,
'
tower_kernel
'
:
(
3
,
1
),
'
activation
'
:
activation
},
'
tower_2
'
:
{
'
reduction_filter
'
:
16
*
4
,
'
tower_filter
'
:
32
*
2
,
'
tower_kernel
'
:
(
5
,
1
),
'
activation
'
:
activation
},
'
tower_3
'
:
{
'
reduction_filter
'
:
16
*
4
,
'
tower_filter
'
:
32
*
2
,
'
tower_kernel
'
:
(
1
,
1
),
'
activation
'
:
activation
},
}
pool_settings_dict3
=
{
'
pool_kernel
'
:
(
3
,
1
),
'
tower_filter
'
:
32
,
'
activation
'
:
activation
}
##########################################
inception_model
=
InceptionModelBase
()
X_input
=
layers
.
Input
(
shape
=
(
window_size
+
1
,
1
,
channels
))
# add 1 to window_size to include current time step t0
X_in
=
inception_model
.
inception_block
(
X_input
,
conv_settings_dict1
,
pool_settings_dict1
,
regularizer
=
regularizer
,
batch_normalisation
=
True
)
out_minor
=
flatten_tail
(
X_in
,
'
Minor_1
'
,
bound_weight
=
True
,
activation
=
activation
,
dropout_rate
=
dropout_rate
,
reduction_filter
=
4
,
first_dense
=
32
,
window_lead_time
=
window_lead_time
)
X_in
=
layers
.
Dropout
(
dropout_rate
)(
X_in
)
X_in
=
inception_model
.
inception_block
(
X_in
,
conv_settings_dict2
,
pool_settings_dict2
,
regularizer
=
regularizer
,
batch_normalisation
=
True
)
X_in
=
layers
.
Dropout
(
dropout_rate
)(
X_in
)
X_in
=
inception_model
.
inception_block
(
X_in
,
conv_settings_dict3
,
pool_settings_dict3
,
regularizer
=
regularizer
,
batch_normalisation
=
True
)
#############################################
out_main
=
flatten_tail
(
X_in
,
'
Main
'
,
activation
=
activation
,
bound_weight
=
True
,
dropout_rate
=
dropout_rate
,
reduction_filter
=
64
,
first_dense
=
64
,
window_lead_time
=
window_lead_time
)
return
keras
.
Model
(
inputs
=
X_input
,
outputs
=
[
out_minor
,
out_main
])
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment