Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
994df99b
Commit
994df99b
authored
5 years ago
by
lukas leufen
Browse files
Options
Downloads
Patches
Plain Diff
use observation instead of selection from input data for observation creation
parent
b1763fcd
No related branches found
No related tags found
2 merge requests
!59
Develop
,
!54
Lukas issue061 refac seperate input target vars
Pipeline
#30907
passed
5 years ago
Stage: test
Stage: pages
Stage: deploy
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/run_modules/post_processing.py
+5
-5
5 additions, 5 deletions
src/run_modules/post_processing.py
with
5 additions
and
5 deletions
src/run_modules/post_processing.py
+
5
−
5
View file @
994df99b
...
@@ -168,7 +168,7 @@ class PostProcessing(RunEnvironment):
...
@@ -168,7 +168,7 @@ class PostProcessing(RunEnvironment):
nn_prediction
=
self
.
_create_nn_forecast
(
input_data
,
nn_prediction
,
mean
,
std
,
transformation_method
,
normalised
)
nn_prediction
=
self
.
_create_nn_forecast
(
input_data
,
nn_prediction
,
mean
,
std
,
transformation_method
,
normalised
)
# persistence
# persistence
persistence_prediction
=
self
.
_create_persistence_forecast
(
input_
data
,
persistence_prediction
,
mean
,
std
,
persistence_prediction
=
self
.
_create_persistence_forecast
(
data
,
persistence_prediction
,
mean
,
std
,
transformation_method
,
normalised
)
transformation_method
,
normalised
)
# ols
# ols
...
@@ -197,7 +197,7 @@ class PostProcessing(RunEnvironment):
...
@@ -197,7 +197,7 @@ class PostProcessing(RunEnvironment):
@staticmethod
@staticmethod
def
_create_observation
(
data
,
_
,
mean
,
std
,
transformation_method
,
normalised
):
def
_create_observation
(
data
,
_
,
mean
,
std
,
transformation_method
,
normalised
):
obs
=
data
.
label
.
copy
()
obs
=
data
.
observation
.
copy
()
if
not
normalised
:
if
not
normalised
:
obs
=
statistics
.
apply_inverse_transformation
(
obs
,
mean
,
std
,
transformation_method
)
obs
=
statistics
.
apply_inverse_transformation
(
obs
,
mean
,
std
,
transformation_method
)
return
obs
return
obs
...
@@ -211,8 +211,8 @@ class PostProcessing(RunEnvironment):
...
@@ -211,8 +211,8 @@ class PostProcessing(RunEnvironment):
ols_prediction
.
values
=
np
.
swapaxes
(
tmp_ols
,
2
,
0
)
if
target_shape
!=
tmp_ols
.
shape
else
tmp_ols
ols_prediction
.
values
=
np
.
swapaxes
(
tmp_ols
,
2
,
0
)
if
target_shape
!=
tmp_ols
.
shape
else
tmp_ols
return
ols_prediction
return
ols_prediction
def
_create_persistence_forecast
(
self
,
input_
data
,
persistence_prediction
,
mean
,
std
,
transformation_method
,
normalised
):
def
_create_persistence_forecast
(
self
,
data
,
persistence_prediction
,
mean
,
std
,
transformation_method
,
normalised
):
tmp_persi
=
input_data
.
sel
({
'
window
'
:
0
,
'
variables
'
:
self
.
target_var
})
tmp_persi
=
data
.
observation
.
copy
().
sel
({
'
window
'
:
0
})
if
not
normalised
:
if
not
normalised
:
tmp_persi
=
statistics
.
apply_inverse_transformation
(
tmp_persi
,
mean
,
std
,
transformation_method
)
tmp_persi
=
statistics
.
apply_inverse_transformation
(
tmp_persi
,
mean
,
std
,
transformation_method
)
window_lead_time
=
self
.
data_store
.
get
(
"
window_lead_time
"
,
"
general
"
)
window_lead_time
=
self
.
data_store
.
get
(
"
window_lead_time
"
,
"
general
"
)
...
@@ -295,7 +295,7 @@ class PostProcessing(RunEnvironment):
...
@@ -295,7 +295,7 @@ class PostProcessing(RunEnvironment):
try
:
try
:
data
=
self
.
train_val_data
.
get_data_generator
(
station
)
data
=
self
.
train_val_data
.
get_data_generator
(
station
)
mean
,
std
,
transformation_method
=
data
.
get_transformation_information
(
variable
=
self
.
target_var
)
mean
,
std
,
transformation_method
=
data
.
get_transformation_information
(
variable
=
self
.
target_var
)
external_data
=
self
.
_create_observation
(
data
,
None
,
mean
,
std
,
transformation_method
)
external_data
=
self
.
_create_observation
(
data
,
None
,
mean
,
std
,
transformation_method
,
normalised
=
False
)
external_data
=
external_data
.
squeeze
(
"
Stations
"
).
sel
(
window
=
1
).
drop
([
"
window
"
,
"
Stations
"
,
"
variables
"
])
external_data
=
external_data
.
squeeze
(
"
Stations
"
).
sel
(
window
=
1
).
drop
([
"
window
"
,
"
Stations
"
,
"
variables
"
])
return
external_data
.
rename
({
'
datetime
'
:
'
index
'
})
return
external_data
.
rename
({
'
datetime
'
:
'
index
'
})
except
KeyError
:
except
KeyError
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment