Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
9c10efd4
Commit
9c10efd4
authored
2 years ago
by
leufen1
Browse files
Options
Downloads
Patches
Plain Diff
implemented residual network
parent
56007946
Branches
master
No related tags found
3 merge requests
!500
Develop
,
!499
Resolve "release v2.3.0"
,
!475
Resolve "ResNet model class"
Pipeline
#109737
passed
2 years ago
Stage: test
Stage: docs
Stage: pages
Stage: deploy
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlair/model_modules/residual_networks.py
+86
-0
86 additions, 0 deletions
mlair/model_modules/residual_networks.py
with
86 additions
and
0 deletions
mlair/model_modules/residual_networks.py
0 → 100644
+
86
−
0
View file @
9c10efd4
__author__
=
"
Lukas Leufen
"
__date__
=
"
2021-08-23
"
from
mlair.model_modules.branched_input_networks
import
BranchedInputCNN
import
tensorflow.keras
as
keras
class
BranchedInputResNet
(
BranchedInputCNN
):
"""
A convolutional neural network with multiple input branches and residual blocks (skip connections).
```python
input_shape = [(65,1,9)]
output_shape = [(4, )]
# model
layer_configuration=[
{
"
type
"
:
"
Conv2D
"
,
"
activation
"
:
"
relu
"
,
"
kernel_size
"
: (7, 1),
"
filters
"
: 32,
"
padding
"
:
"
same
"
},
{
"
type
"
:
"
MaxPooling2D
"
,
"
pool_size
"
: (2, 1),
"
strides
"
: (2, 1)},
{
"
type
"
:
"
residual_block
"
,
"
activation
"
:
"
relu
"
,
"
kernel_size
"
: (3, 1),
"
filters
"
: 32,
"
strides
"
: (1, 1),
"
kernel_regularizer
"
:
"
l2
"
},
{
"
type
"
:
"
residual_block
"
,
"
activation
"
:
"
relu
"
,
"
kernel_size
"
: (3, 1),
"
filters
"
: 32,
"
strides
"
: (1, 1),
"
kernel_regularizer
"
:
"
l2
"
},
{
"
type
"
:
"
residual_block
"
,
"
activation
"
:
"
relu
"
,
"
kernel_size
"
: (3, 1),
"
filters
"
: 64,
"
strides
"
: (1, 1),
"
kernel_regularizer
"
:
"
l2
"
,
"
use_1x1conv
"
: True},
{
"
type
"
:
"
residual_block
"
,
"
activation
"
:
"
relu
"
,
"
kernel_size
"
: (3, 1),
"
filters
"
: 64,
"
strides
"
: (1, 1),
"
kernel_regularizer
"
:
"
l2
"
},
{
"
type
"
:
"
residual_block
"
,
"
activation
"
:
"
relu
"
,
"
kernel_size
"
: (3, 1),
"
filters
"
: 128,
"
strides
"
: (1, 1),
"
kernel_regularizer
"
:
"
l2
"
,
"
use_1x1conv
"
: True},
{
"
type
"
:
"
residual_block
"
,
"
activation
"
:
"
relu
"
,
"
kernel_size
"
: (3, 1),
"
filters
"
: 128,
"
strides
"
: (1, 1),
"
kernel_regularizer
"
:
"
l2
"
},
{
"
type
"
:
"
MaxPooling2D
"
,
"
pool_size
"
: (2, 1),
"
strides
"
: (2, 1)},
{
"
type
"
:
"
Dropout
"
,
"
rate
"
: 0.25},
{
"
type
"
:
"
Flatten
"
},
{
"
type
"
:
"
Concatenate
"
},
{
"
type
"
:
"
Dense
"
,
"
units
"
: 128,
"
activation
"
:
"
relu
"
}
]
model = BranchedInputResNet(input_shape, output_shape, layer_configuration)
```
"""
def
__init__
(
self
,
input_shape
:
list
,
output_shape
:
list
,
layer_configuration
:
list
,
optimizer
=
"
adam
"
,
**
kwargs
):
super
().
__init__
(
input_shape
,
output_shape
,
layer_configuration
,
optimizer
=
optimizer
,
**
kwargs
)
@staticmethod
def
residual_block
(
**
layer_kwargs
):
layer_name
=
layer_kwargs
.
pop
(
"
name
"
).
split
(
"
_
"
)
layer_name
=
"
_
"
.
join
([
*
layer_name
[
0
:
2
],
"
%s
"
,
*
layer_name
[
2
:]])
act
=
layer_kwargs
.
pop
(
"
activation
"
)
act_name
=
act
.
__name__
use_1x1conv
=
layer_kwargs
.
pop
(
"
use_1x1conv
"
,
False
)
def
block
(
x
):
layer_kwargs
.
update
({
"
strides
"
:
2
if
use_1x1conv
else
1
})
y
=
keras
.
layers
.
Conv2D
(
**
layer_kwargs
,
padding
=
'
same
'
,
name
=
layer_name
%
"
Conv1
"
)(
x
)
y
=
act
(
name
=
layer_name
%
f
"
{
act_name
}
1
"
)(
y
)
layer_kwargs
.
update
({
"
strides
"
:
1
})
y
=
keras
.
layers
.
Conv2D
(
**
layer_kwargs
,
padding
=
'
same
'
,
name
=
layer_name
%
"
Conv2
"
)(
y
)
y
=
keras
.
layers
.
BatchNormalization
(
name
=
layer_name
%
"
BN2
"
)(
y
)
if
use_1x1conv
is
True
:
layer_kwargs
.
update
({
"
strides
"
:
2
})
layer_kwargs
.
update
({
"
kernel_size
"
:
1
})
x
=
keras
.
layers
.
Conv2D
(
**
layer_kwargs
,
padding
=
'
same
'
,
name
=
layer_name
%
"
Conv1x1
"
)(
x
)
out
=
keras
.
layers
.
Add
(
name
=
layer_name
%
"
Add
"
)([
x
,
y
])
out
=
act
(
name
=
layer_name
%
f
"
{
act_name
}
2
"
)(
out
)
return
out
return
block
def
_extract_layer_conf
(
self
,
layer_opts
):
follow_up_layer
=
None
layer_type
=
layer_opts
.
pop
(
"
type
"
)
activation_type
=
layer_opts
.
pop
(
"
activation
"
,
None
)
if
activation_type
is
not
None
:
activation
=
self
.
_activation
.
get
(
activation_type
)
kernel_initializer
=
self
.
_initializer
.
get
(
activation_type
,
"
glorot_uniform
"
)
layer_opts
[
"
kernel_initializer
"
]
=
kernel_initializer
follow_up_layer
=
activation
regularizer_type
=
layer_opts
.
pop
(
"
kernel_regularizer
"
,
None
)
if
regularizer_type
is
not
None
:
layer_opts
[
"
kernel_regularizer
"
]
=
self
.
_set_regularizer
(
regularizer_type
,
**
self
.
kwargs
)
if
layer_type
.
lower
()
==
"
residual_block
"
:
layer
=
self
.
residual_block
layer_opts
[
"
activation
"
]
=
follow_up_layer
follow_up_layer
=
None
else
:
layer
=
getattr
(
keras
.
layers
,
layer_type
,
None
)
return
layer
,
layer_opts
,
follow_up_layer
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment