Skip to content
Snippets Groups Projects
Commit a8274c1b authored by Falco Weichselbaum's avatar Falco Weichselbaum
Browse files

changed assertions to be compatible with new tf2 outputs

parent 0a92109c
No related branches found
No related tags found
4 merge requests!413update release branch,!412Resolve "release v2.0.0",!349trying a new requirements.txt list that was generated using pipreqs (an...,!335Resolve "upgrade code to TensorFlow V2"
Pipeline #82037 failed
import tensorflow
import tensorflow.keras as keras
import pytest
from mlair.model_modules.flatten import flatten_tail, get_activation
from tensorflow.python.keras.layers.advanced_activations import ELU, ReLU
class TestGetActivation:
......@@ -18,10 +19,13 @@ class TestGetActivation:
def test_sting_act_unknown(self, model_input):
with pytest.raises(ValueError) as einfo:
get_activation(model_input, activation='invalid_activation', name='String')
assert 'Unknown activation function:invalid_activation' in str(einfo.value)
assert 'Unknown activation function: invalid_activation. ' \
'Please ensure this object is passed to the `custom_objects` argument. ' \
'See https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object ' \
'for details.' in str(einfo.value)
def test_layer_act(self, model_input):
x_in = get_activation(model_input, activation=keras.layers.advanced_activations.ELU, name='adv_layer')
x_in = get_activation(model_input, activation=ELU, name='adv_layer')
act = x_in._keras_history[0]
assert act.name == 'adv_layer'
......@@ -44,7 +48,7 @@ class TestFlattenTail:
return element
def test_flatten_tail_no_bound_no_regul_no_drop(self, model_input):
tail = flatten_tail(input_x=model_input, inner_neurons=64, activation=keras.layers.advanced_activations.ELU,
tail = flatten_tail(input_x=model_input, inner_neurons=64, activation=ELU,
output_neurons=2, output_activation='linear',
reduction_filter=None,
name='Main_tail',
......@@ -67,10 +71,10 @@ class TestFlattenTail:
flatten = self.step_in(inner_dense)
assert flatten.name == 'Main_tail'
input_layer = self.step_in(flatten)
assert input_layer.input_shape == (None, 7, 1, 2)
assert input_layer.input_shape == [(None, 7, 1, 2)]
def test_flatten_tail_all_settings(self, model_input):
tail = flatten_tail(input_x=model_input, inner_neurons=64, activation=keras.layers.advanced_activations.ELU,
tail = flatten_tail(input_x=model_input, inner_neurons=64, activation=ELU,
output_neurons=3, output_activation='linear',
reduction_filter=32,
name='Main_tail_all',
......@@ -84,36 +88,40 @@ class TestFlattenTail:
final_dense = self.step_in(final_act)
assert final_dense.name == 'Main_tail_all_out_Dense'
assert final_dense.units == 3
assert isinstance(final_dense.kernel_regularizer, keras.regularizers.L1L2)
assert isinstance(final_dense.kernel_regularizer, keras.regularizers.L2)
final_dropout = self.step_in(final_dense)
assert final_dropout.name == 'Main_tail_all_Dropout_2'
assert final_dropout.rate == 0.35
inner_act = self.step_in(final_dropout)
assert inner_act.get_config() == {'name': 'activation_1', 'trainable': True, 'activation': 'tanh'}
assert inner_act.get_config() == {'name': 'activation', 'trainable': True,
'dtype': 'float32', 'activation': 'tanh'}
inner_dense = self.step_in(inner_act)
assert inner_dense.units == 64
assert isinstance(inner_dense.kernel_regularizer, keras.regularizers.L1L2)
assert isinstance(inner_dense.kernel_regularizer, keras.regularizers.L2)
inner_dropout = self.step_in(inner_dense)
assert inner_dropout.get_config() == {'name': 'Main_tail_all_Dropout_1', 'trainable': True, 'rate': 0.35,
assert inner_dropout.get_config() == {'name': 'Main_tail_all_Dropout_1', 'trainable': True,
'dtype': 'float32', 'rate': 0.35,
'noise_shape': None, 'seed': None}
flatten = self.step_in(inner_dropout)
assert flatten.get_config() == {'name': 'Main_tail_all', 'trainable': True, 'data_format': 'channels_last'}
assert flatten.get_config() == {'name': 'Main_tail_all', 'trainable': True,
'dtype': 'float32', 'data_format': 'channels_last'}
reduc_act = self.step_in(flatten)
assert reduc_act.get_config() == {'name': 'Main_tail_all_conv_act', 'trainable': True, 'alpha': 1.0}
assert reduc_act.get_config() == {'name': 'Main_tail_all_conv_act', 'trainable': True,
'dtype': 'float32', 'alpha': 1.0}
reduc_conv = self.step_in(reduc_act)
assert reduc_conv.kernel_size == (1, 1)
assert reduc_conv.name == 'Main_tail_all_Conv_1x1'
assert reduc_conv.filters == 32
assert isinstance(reduc_conv.kernel_regularizer, keras.regularizers.L1L2)
assert isinstance(reduc_conv.kernel_regularizer, keras.regularizers.L2)
input_layer = self.step_in(reduc_conv)
assert input_layer.input_shape == (None, 7, 1, 2)
assert input_layer.input_shape == [(None, 7, 1, 2)]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment