Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
bdbeea28
Commit
bdbeea28
authored
2 years ago
by
leufen1
Browse files
Options
Downloads
Patches
Plain Diff
try different approaches
parent
11e155dd
No related branches found
No related tags found
4 merge requests
!468
first implementation of toar-data-v2, can load data (but cannot process these...
,
!467
Resolve "release v2.2.0"
,
!461
Merge Dev into issue400
,
!459
Resolve "improve set keras generator speed"
Pipeline
#106128
failed
2 years ago
Stage: test
Stage: docs
Stage: pages
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
mlair/data_handler/iterator.py
+80
-1
80 additions, 1 deletion
mlair/data_handler/iterator.py
with
80 additions
and
1 deletion
mlair/data_handler/iterator.py
+
80
−
1
View file @
bdbeea28
...
...
@@ -87,7 +87,8 @@ class KerasIterator(keras.utils.Sequence):
self
.
upsampling
=
upsampling
self
.
indexes
:
list
=
[]
self
.
_cleanup_path
(
batch_path
)
self
.
_prepare_batches
(
use_multiprocessing
,
max_number_multiprocessing
)
self
.
_prepare_batches_parallel
(
use_multiprocessing
,
max_number_multiprocessing
)
self
.
_prepare_batches
(
False
,
max_number_multiprocessing
)
def
__len__
(
self
)
->
int
:
return
len
(
self
.
indexes
)
...
...
@@ -121,6 +122,11 @@ class KerasIterator(keras.utils.Sequence):
"""
Concatenate two lists of data along axis=0.
"""
return
list
(
map
(
lambda
n1
,
n2
:
np
.
concatenate
((
n1
,
n2
),
axis
=
0
),
old
,
new
))
@staticmethod
def
_concatenate_multi
(
*
args
:
List
[
np
.
ndarray
])
->
List
[
np
.
ndarray
]:
"""
Concatenate two lists of data along axis=0.
"""
return
list
(
map
(
lambda
*
_args
:
np
.
concatenate
(
_args
,
axis
=
0
),
*
args
))
def
_get_batch
(
self
,
data_list
:
List
[
np
.
ndarray
],
b
:
int
)
->
List
[
np
.
ndarray
]:
"""
Get batch according to batch size from data list.
"""
return
list
(
map
(
lambda
data
:
data
[
b
*
self
.
batch_size
:(
b
+
1
)
*
self
.
batch_size
,
...],
data_list
))
...
...
@@ -132,6 +138,51 @@ class KerasIterator(keras.utils.Sequence):
Y
=
list
(
map
(
lambda
x
:
x
[
p
],
Y
))
return
X
,
Y
@TimeTrackingWrapper
def
_prepare_batches_parallel
(
self
,
use_multiprocessing
=
False
,
max_process
=
1
)
->
None
:
index
=
0
remaining
=
[]
mod_rank
=
self
.
_get_model_rank
()
# max_process = 12
n_process
=
min
([
psutil
.
cpu_count
(
logical
=
False
),
len
(
self
.
_collection
),
max_process
])
# use only physical cpus
if
n_process
>
1
and
use_multiprocessing
is
True
:
# parallel solution
pool
=
multiprocessing
.
Pool
(
n_process
)
output
=
[]
else
:
pool
=
None
output
=
None
for
data
in
self
.
_collection
:
X
,
_Y
=
data
.
get_data
(
upsampling
=
self
.
upsampling
)
length
=
X
[
0
].
shape
[
0
]
batches
=
_get_number_of_mini_batches
(
length
,
self
.
batch_size
)
if
pool
is
None
:
res
=
f_proc
(
X
,
_Y
,
self
.
upsampling
,
mod_rank
,
self
.
batch_size
,
self
.
_path
,
index
)
if
res
is
not
None
:
remaining
.
append
(
res
)
else
:
output
.
append
(
pool
.
apply_async
(
f_proc
,
args
=
(
X
,
_Y
,
self
.
upsampling
,
mod_rank
,
self
.
batch_size
,
self
.
_path
,
index
)))
index
+=
batches
if
output
is
not
None
:
for
p
in
output
:
res
=
p
.
get
()
if
res
is
not
None
:
remaining
.
append
(
res
)
pool
.
close
()
if
len
(
remaining
)
>
0
:
X
=
self
.
_concatenate_multi
(
*
[
e
[
0
]
for
e
in
remaining
])
Y
=
self
.
_concatenate_multi
(
*
[
e
[
1
]
for
e
in
remaining
])
length
=
X
[
0
].
shape
[
0
]
batches
=
_get_number_of_mini_batches
(
length
,
self
.
batch_size
)
remaining
=
f_proc
(
X
,
Y
,
self
.
upsampling
,
mod_rank
,
self
.
batch_size
,
self
.
_path
,
index
)
index
+=
batches
if
remaining
is
not
None
:
save_to_pickle
(
self
.
_path
,
X
=
remaining
[
0
],
Y
=
remaining
[
1
],
index
=
index
)
index
+=
1
self
.
indexes
=
np
.
arange
(
0
,
index
).
tolist
()
logging
.
warning
(
f
"
hightst index is
{
index
}
"
)
if
pool
is
not
None
:
pool
.
join
()
@TimeTrackingWrapper
def
_prepare_batches
(
self
,
use_multiprocessing
=
False
,
max_process
=
1
)
->
None
:
"""
...
...
@@ -180,6 +231,7 @@ class KerasIterator(keras.utils.Sequence):
save_to_pickle
(
self
.
_path
,
X
=
remaining
[
0
],
Y
=
remaining
[
1
],
index
=
index
)
index
+=
1
self
.
indexes
=
np
.
arange
(
0
,
index
).
tolist
()
logging
.
warning
(
f
"
hightst index is
{
index
}
"
)
if
pool
is
not
None
:
pool
.
close
()
pool
.
join
()
...
...
@@ -225,3 +277,30 @@ def save_to_pickle(path, X: List[np.ndarray], Y: List[np.ndarray], index: int) -
def
get_batch
(
data_list
:
List
[
np
.
ndarray
],
b
:
int
,
batch_size
:
int
)
->
List
[
np
.
ndarray
]:
"""
Get batch according to batch size from data list.
"""
return
list
(
map
(
lambda
data
:
data
[
b
*
batch_size
:(
b
+
1
)
*
batch_size
,
...],
data_list
))
def
_permute_data
(
X
,
Y
):
p
=
np
.
random
.
permutation
(
len
(
X
[
0
]))
# equiv to .shape[0]
X
=
list
(
map
(
lambda
x
:
x
[
p
],
X
))
Y
=
list
(
map
(
lambda
x
:
x
[
p
],
Y
))
return
X
,
Y
def
_get_number_of_mini_batches
(
number_of_samples
:
int
,
batch_size
:
int
)
->
int
:
"""
Return number of mini batches as the floored ration of number of samples to batch size.
"""
return
math
.
floor
(
number_of_samples
/
batch_size
)
def
f_proc
(
X
,
_Y
,
upsampling
,
mod_rank
,
batch_size
,
_path
,
index
):
Y
=
[
_Y
[
0
]
for
_
in
range
(
mod_rank
)]
if
upsampling
:
X
,
Y
=
_permute_data
(
X
,
Y
)
length
=
X
[
0
].
shape
[
0
]
batches
=
_get_number_of_mini_batches
(
length
,
batch_size
)
for
b
in
range
(
batches
):
f_proc_keras_gen
(
X
,
Y
,
b
,
batch_size
,
index
,
_path
)
index
+=
1
if
(
batches
*
batch_size
)
<
length
:
# keep remaining to concatenate with next data element
remaining
=
(
get_batch
(
X
,
batches
,
batch_size
),
get_batch
(
Y
,
batches
,
batch_size
))
else
:
remaining
=
None
return
remaining
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment