Skip to content
Snippets Groups Projects
Commit d2c47e76 authored by leufen1's avatar leufen1
Browse files

new dist file and changelog

parent e18fe209
Branches
Tags
4 merge requests!480Merge multiple stats into crps working branch,!471Master,!467Resolve "release v2.2.0",!466Draft: Resolve "Include CRPS analysis and other ens verif methods or plots"
Pipeline #108914 passed
# Changelog
All notable changes to this project will be documented in this file.
## v2.2.0 - 2022-08-16 - new data sources and python3.9
### general:
* new data sources: era5 data and ToarDB V2
* CAMS competitor available
* improved execution speed
* MLAir is now updated to python3.9
### new features:
* new data loading method to load era5 data on Jülich systems (#393)
* new data loading method to load data from ToarDB V2 (#396)
* implemented competitor model using CAMS ensemble forecasts (#394)
* OLS competitor is only calculated if provided in competitor list (#404)
* experimental: snapshot creation to skip preprocessing stage (#346, #405, #406)
* new workflow HyperSearchWorkflow stopping after training stage (#408)
### technical:
* fixed minor issues and improved execution speed in postprocessing (#401, #413)
* improved speed in keras iterator creation (#409)
* solved bug for very long competitor time series (#395)
* updated python, HPC and CI environment (#402, #403, #407, #410)
* fix for climateFIR data handler (#399)
* fix for report model error (#416)
## v2.1.0 - 2022-06-07 - new evaluation metrics and improved training
### general:
......
......@@ -34,7 +34,7 @@ HPC systems, see [here](#special-instructions-for-installation-on-jülich-hpc-sy
* Installation of **MLAir**:
* Either clone MLAir from the [gitlab repository](https://gitlab.jsc.fz-juelich.de/esde/machine-learning/mlair.git)
and use it without installation (beside the requirements)
* or download the distribution file ([current version](https://gitlab.jsc.fz-juelich.de/esde/machine-learning/mlair/-/blob/master/dist/mlair-2.1.0-py3-none-any.whl))
* or download the distribution file ([current version](https://gitlab.jsc.fz-juelich.de/esde/machine-learning/mlair/-/blob/master/dist/mlair-2.2.0-py3-none-any.whl))
and install it via `pip install <dist_file>.whl`. In this case, you can simply import MLAir in any python script
inside your virtual environment using `import mlair`.
......
File added
......@@ -27,7 +27,7 @@ Installation of MLAir
* Install all requirements from `requirements.txt <https://gitlab.jsc.fz-juelich.de/esde/machine-learning/mlair/-/blob/master/requirements.txt>`_
preferably in a virtual environment
* Either clone MLAir from the `gitlab repository <https://gitlab.jsc.fz-juelich.de/esde/machine-learning/mlair.git>`_
* or download the distribution file (`current version <https://gitlab.jsc.fz-juelich.de/esde/machine-learning/mlair/-/blob/master/dist/mlair-2.1.0-py3-none-any.whl>`_)
* or download the distribution file (`current version <https://gitlab.jsc.fz-juelich.de/esde/machine-learning/mlair/-/blob/master/dist/mlair-2.2.0-py3-none-any.whl>`_)
and install it via :py:`pip install <dist_file>.whl`. In this case, you can simply
import MLAir in any python script inside your virtual environment using :py:`import mlair`.
......
__version_info__ = {
'major': 2,
'minor': 1,
'minor': 2,
'micro': 0,
}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment