Skip to content
Snippets Groups Projects
Commit d31c0176 authored by leufen1's avatar leufen1
Browse files

solved lazy error, some station removals have to be fixed still

parent 9e4c6db8
No related branches found
No related tags found
5 merge requests!319add all changes of dev into release v1.4.0 branch,!318Resolve "release v1.4.0",!317enabled window_lead_time=1,!295Resolve "data handler FIR filter",!259Draft: Resolve "WRF-Datahandler should inherit from SingleStationDatahandler"
Pipeline #68018 passed
...@@ -236,7 +236,7 @@ class DataHandlerMixedSamplingWithClimateFirFilterSingleStation(DataHandlerMixed ...@@ -236,7 +236,7 @@ class DataHandlerMixedSamplingWithClimateFirFilterSingleStation(DataHandlerMixed
def _extract_lazy(self, lazy_data): def _extract_lazy(self, lazy_data):
_data, _meta, _input_data, _target_data, self.climate_filter_coeff, self.apriori, self.all_apriori = lazy_data _data, _meta, _input_data, _target_data, self.climate_filter_coeff, self.apriori, self.all_apriori = lazy_data
DataHandlerSingleStation._extract_lazy(self, (_data, _meta, _input_data, _target_data)) DataHandlerMixedSamplingWithFilterSingleStation._extract_lazy(self, (_data, _meta, _input_data, _target_data))
@staticmethod @staticmethod
def _get_fs(**kwargs): def _get_fs(**kwargs):
......
...@@ -397,7 +397,7 @@ class ClimateFIRFilter: ...@@ -397,7 +397,7 @@ class ClimateFIRFilter:
# filt = xr.apply_ufunc(fir_filter_vectorized, filter_input_data, time_axis, # filt = xr.apply_ufunc(fir_filter_vectorized, filter_input_data, time_axis,
# input_core_dims=[[new_dim], []], output_core_dims=[[new_dim]], vectorize=True, # input_core_dims=[[new_dim], []], output_core_dims=[[new_dim]], vectorize=True,
# kwargs=kwargs) # kwargs=kwargs)
# with TimeTracking(name="convolve"): with TimeTracking(name="convolve"):
slicer = slice(int(-(length - 1) / 2), int((length - 1) / 2)) slicer = slice(int(-(length - 1) / 2), int((length - 1) / 2))
filt = xr.apply_ufunc(fir_filter_convolve_vectorized, filter_input_data.sel({new_dim: slicer}), filt = xr.apply_ufunc(fir_filter_convolve_vectorized, filter_input_data.sel({new_dim: slicer}),
input_core_dims=[[new_dim]], input_core_dims=[[new_dim]],
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment