Skip to content
Snippets Groups Projects
Commit d3dca8fa authored by lukas leufen's avatar lukas leufen
Browse files

Merge branch...

Merge branch 'falco_issue313-allow-non-monotonic-window-lead-times-in-helpers-statistics-py-ahead_names-definition-2' into 'develop'

Resolve "allow non-monotonic window lead times in helpers/statistics.py ahead_names definition"

See merge request !310
parents bfa34e4b 08c206f5
No related branches found
No related tags found
6 merge requests!319add all changes of dev into release v1.4.0 branch,!318Resolve "release v1.4.0",!317enabled window_lead_time=1,!314include #313,!310Resolve "allow non-monotonic window lead times in helpers/statistics.py ahead_names definition",!259Draft: Resolve "WRF-Datahandler should inherit from SingleStationDatahandler"
Pipeline #73726 passed
......@@ -283,7 +283,7 @@ class SkillScores:
combination_strings = [f"{first}-{second}" for (first, second) in combinations]
return combinations, combination_strings
def skill_scores(self, window_lead_time: int) -> pd.DataFrame:
def skill_scores(self, window_lead_time: int, ahead_dim="ahead") -> pd.DataFrame:
"""
Calculate skill scores for all combinations of model names.
......@@ -291,7 +291,7 @@ class SkillScores:
:return: skill score for each comparison and forecast step
"""
ahead_names = list(range(1, window_lead_time + 1))
ahead_names = list(self.external_data[ahead_dim].data)
combinations, combination_strings = self.get_model_name_combinations()
skill_score = pd.DataFrame(index=combination_strings)
for iahead in ahead_names:
......@@ -304,7 +304,7 @@ class SkillScores:
return skill_score
def climatological_skill_scores(self, internal_data: Data, window_lead_time: int,
forecast_name: str) -> xr.DataArray:
forecast_name: str, ahead_dim="ahead") -> xr.DataArray:
"""
Calculate climatological skill scores according to Murphy (1988).
......@@ -317,7 +317,7 @@ class SkillScores:
:return: all CASES as well as all terms
"""
ahead_names = list(range(1, window_lead_time + 1))
ahead_names = list(self.external_data[ahead_dim].data)
all_terms = ['AI', 'AII', 'AIII', 'AIV', 'BI', 'BII', 'BIV', 'CI', 'CIV', 'CASE I', 'CASE II', 'CASE III',
'CASE IV']
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment