Skip to content
Snippets Groups Projects
Commit e5dcf585 authored by lukas leufen's avatar lukas leufen
Browse files

renamed parameter window_history with window_history_size

parent 604ed335
Branches
Tags
2 merge requests!24include recent development,!18include setup ml model
Pipeline #26800 passed
......@@ -55,5 +55,6 @@ Thumbs.db
htmlcov/
.pytest_cache
/test/data/
/test/test_modules/data/
report.html
/TestExperiment/
......@@ -8,6 +8,7 @@ import argparse
from src.modules.experiment_setup import ExperimentSetup
from src.modules.run_environment import RunEnvironment
from src.modules.pre_processing import PreProcessing
from src.modules.model_setup import ModelSetup
from src.modules.modules import Training, PostProcessing
......@@ -18,6 +19,8 @@ def main(parser_args):
station_type='background')
PreProcessing()
ModelSetup()
Training()
PostProcessing()
......
......@@ -20,7 +20,7 @@ class DataGenerator(keras.utils.Sequence):
def __init__(self, data_path: str, network: str, stations: Union[str, List[str]], variables: List[str],
interpolate_dim: str, target_dim: str, target_var: str, station_type: str = None,
interpolate_method: str = "linear", limit_nan_fill: int = 1, window_history: int = 7,
interpolate_method: str = "linear", limit_nan_fill: int = 1, window_history_size: int = 7,
window_lead_time: int = 4, transform_method: str = "standardise", **kwargs):
self.data_path = os.path.abspath(data_path)
self.network = network
......@@ -32,7 +32,7 @@ class DataGenerator(keras.utils.Sequence):
self.station_type = station_type
self.interpolate_method = interpolate_method
self.limit_nan_fill = limit_nan_fill
self.window_history = window_history
self.window_history_size = window_history_size
self.window_lead_time = window_lead_time
self.transform_method = transform_method
self.kwargs = kwargs
......@@ -100,7 +100,7 @@ class DataGenerator(keras.utils.Sequence):
**self.kwargs)
data.interpolate(self.interpolate_dim, method=self.interpolate_method, limit=self.limit_nan_fill)
data.transform("datetime", method=self.transform_method)
data.make_history_window(self.interpolate_dim, self.window_history)
data.make_history_window(self.interpolate_dim, self.window_history_size)
data.make_labels(self.target_dim, self.target_var, self.interpolate_dim, self.window_lead_time)
data.history_label_nan_remove(self.interpolate_dim)
return data
......
......@@ -3,6 +3,7 @@ __date__ = '2019-10-22'
import keras
import keras.layers as layers
import logging
class InceptionModelBase:
......@@ -51,7 +52,7 @@ class InceptionModelBase:
regularizer = kwargs.get('regularizer', keras.regularizers.l2(0.01))
bn_settings = kwargs.get('bn_settings', {})
act_settings = kwargs.get('act_settings', {})
print(f'Inception Block with activation: {activation}')
logging.debug(f'Inception Block with activation: {activation}')
block_name = f'Block_{self.number_of_blocks}{self.block_part_name()}_{tower_kernel[0]}x{tower_kernel[1]}'
......
......@@ -28,7 +28,7 @@ class ExperimentSetup(RunEnvironment):
"""
def __init__(self, parser_args=None, var_all_dict=None, stations=None, network=None, station_type=None, variables=None,
statistics_per_var=None, start=None, end=None, window_history=None, target_var="o3", target_dim=None,
statistics_per_var=None, start=None, end=None, window_history_size=None, target_var="o3", target_dim=None,
window_lead_time=None, dimensions=None, interpolate_dim=None, interpolate_method=None,
limit_nan_fill=None, train_start=None, train_end=None, val_start=None, val_end=None, test_start=None,
test_end=None, use_all_stations_on_all_data_sets=True, trainable=False, fraction_of_train=None,
......@@ -58,7 +58,7 @@ class ExperimentSetup(RunEnvironment):
self._set_param("statistics_per_var", statistics_per_var, default=self.data_store.get("var_all_dict", "general"))
self._set_param("start", start, default="1997-01-01", scope="general")
self._set_param("end", end, default="2017-12-31", scope="general")
self._set_param("window_history", window_history, default=13)
self._set_param("window_history_size", window_history_size, default=13)
# target
self._set_param("target_var", target_var, default="o3")
......
......@@ -13,7 +13,7 @@ from src.join import EmptyQueryResult
DEFAULT_ARGS_LIST = ["data_path", "network", "stations", "variables", "interpolate_dim", "target_dim", "target_var"]
DEFAULT_KWARGS_LIST = ["limit_nan_fill", "window_history", "window_lead_time", "statistics_per_var", "station_type"]
DEFAULT_KWARGS_LIST = ["limit_nan_fill", "window_history_size", "window_lead_time", "statistics_per_var", "station_type"]
class PreProcessing(RunEnvironment):
......
......@@ -21,7 +21,7 @@ class TestDataGenerator:
assert gen.target_var == 'o3'
assert gen.interpolate_method == "linear"
assert gen.limit_nan_fill == 1
assert gen.window_history == 7
assert gen.window_history_size == 7
assert gen.window_lead_time == 4
assert gen.transform_method == "standardise"
assert gen.kwargs == {}
......@@ -44,7 +44,7 @@ class TestDataGenerator:
assert station[0].Stations.data == "DEBW107"
assert station[0].data.shape[1:] == (8, 1, 2)
assert station[1].data.shape[-1] == gen.window_lead_time
assert station[0].data.shape[1] == gen.window_history + 1
assert station[0].data.shape[1] == gen.window_history_size + 1
def test_iter(self, gen):
assert hasattr(gen, '_iterator') is False
......
......@@ -72,7 +72,7 @@ class TestExperimentSetup:
assert data_store.get("statistics_per_var", "general") == default_var_all_dict
assert data_store.get("start", "general") == "1997-01-01"
assert data_store.get("end", "general") == "2017-12-31"
assert data_store.get("window_history", "general") == 13
assert data_store.get("window_history_size", "general") == 13
# target
assert data_store.get("target_var", "general") == "o3"
assert data_store.get("target_dim", "general") == "variables"
......@@ -100,7 +100,7 @@ class TestExperimentSetup:
var_all_dict={'o3': 'dma8eu', 'relhum': 'average_values', 'temp': 'maximum'},
stations=['DEBY053', 'DEBW059', 'DEBW027'], network="INTERNET", station_type="background",
variables=["o3", "temp"],
statistics_per_var=None, start="1999-01-01", end="2001-01-01", window_history=4,
statistics_per_var=None, start="1999-01-01", end="2001-01-01", window_history_size=4,
target_var="temp", target_dim="target", window_lead_time=10, dimensions="dim1",
interpolate_dim="int_dim", interpolate_method="cubic", limit_nan_fill=5, train_start="2000-01-01",
train_end="2000-01-02", val_start="2000-01-03", val_end="2000-01-04", test_start="2000-01-05",
......@@ -127,7 +127,7 @@ class TestExperimentSetup:
'temp': 'maximum'}
assert data_store.get("start", "general") == "1999-01-01"
assert data_store.get("end", "general") == "2001-01-01"
assert data_store.get("window_history", "general") == 4
assert data_store.get("window_history_size", "general") == 4
# target
assert data_store.get("target_var", "general") == "temp"
assert data_store.get("target_dim", "general") == "target"
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment