Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
e9a357b7
Commit
e9a357b7
authored
Nov 12, 2019
by
lukas leufen
Browse files
Options
Downloads
Plain Diff
l_p_loss and lrdecay implementation
See merge request toar/machinelearningtools!7
parents
430cc664
0ec29f6a
Branches
Branches containing commit
Tags
Tags containing commit
2 merge requests
!9
new version v0.2.0
,
!7
l_p_loss and lrdecay implementation
Pipeline
#25749
passed
Nov 12, 2019
Stage: test
Stage: pages
Stage: deploy
Changes
2
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/helpers.py
+69
-0
69 additions, 0 deletions
src/helpers.py
test/test_helpers.py
+57
-0
57 additions, 0 deletions
test/test_helpers.py
with
126 additions
and
0 deletions
src/helpers.py
+
69
−
0
View file @
e9a357b7
...
...
@@ -2,7 +2,76 @@ __author__ = 'Lukas Leufen'
__date__
=
'
2019-10-21
'
import
logging
import
keras
import
keras.backend
as
K
import
math
from
typing
import
Union
import
numpy
as
np
def
to_list
(
arg
):
if
not
isinstance
(
arg
,
list
):
arg
=
[
arg
]
return
arg
def
l_p_loss
(
power
:
int
):
"""
Calculate the L<p> loss for given power p. L1 (p=1) is equal to mean absolute error (MAE), L2 (p=2) is to mean
squared error (MSE), ...
:param power: set the power of the error calculus
:return: loss for given power
"""
def
loss
(
y_true
,
y_pred
):
return
K
.
mean
(
K
.
pow
(
K
.
abs
(
y_pred
-
y_true
),
power
),
axis
=-
1
)
return
loss
class
LearningRateDecay
(
keras
.
callbacks
.
History
):
"""
Decay learning rate during model training. Start with a base learning rate and lower this rate after every
n(=epochs_drop) epochs by drop value (0, 1], drop value = 1 means no decay in learning rate.
"""
def
__init__
(
self
,
base_lr
:
float
=
0.01
,
drop
:
float
=
0.96
,
epochs_drop
:
int
=
8
):
super
().
__init__
()
self
.
lr
=
{
'
lr
'
:
[]}
self
.
base_lr
=
self
.
check_param
(
base_lr
,
'
base_lr
'
)
self
.
drop
=
self
.
check_param
(
drop
,
'
drop
'
)
self
.
epochs_drop
=
self
.
check_param
(
epochs_drop
,
'
epochs_drop
'
,
upper
=
None
)
@staticmethod
def
check_param
(
value
:
float
,
name
:
str
,
lower
:
Union
[
float
,
None
]
=
0
,
upper
:
Union
[
float
,
None
]
=
1
):
"""
Check if given value is in interval. The left (lower) endpoint is open, right (upper) endpoint is closed. To
only one side of the interval, set the other endpoint to None. If both ends are set to None, just return the
value without any check.
:param value: value to check
:param name: name of the variable to display in error message
:param lower: left (lower) endpoint of interval, opened
:param upper: right (upper) endpoint of interval, closed
:return: unchanged value or raise ValueError
"""
if
lower
is
None
:
lower
=
-
np
.
inf
if
upper
is
None
:
upper
=
np
.
inf
if
lower
<
value
<=
upper
:
return
value
else
:
raise
ValueError
(
f
"
{
name
}
is out of allowed range (
{
lower
}
,
{
upper
}{
'
)
'
if
upper
==
np
.
inf
else
'
]
'
}
:
"
f
"
{
name
}
=
{
value
}
"
)
def
on_epoch_begin
(
self
,
epoch
:
int
,
logs
=
None
):
"""
Lower learning rate every epochs_drop epochs by factor drop.
:param epoch: current epoch
:param logs: ?
:return: update keras learning rate
"""
current_lr
=
self
.
base_lr
*
math
.
pow
(
self
.
drop
,
math
.
floor
(
epoch
/
self
.
epochs_drop
))
K
.
set_value
(
self
.
model
.
optimizer
.
lr
,
current_lr
)
self
.
lr
[
'
lr
'
].
append
(
current_lr
)
logging
.
info
(
f
"
Set learning rate to
{
current_lr
}
"
)
return
K
.
get_value
(
self
.
model
.
optimizer
.
lr
)
This diff is collapsed.
Click to expand it.
test/test_helpers.py
0 → 100644
+
57
−
0
View file @
e9a357b7
import
pytest
from
src.helpers
import
l_p_loss
,
LearningRateDecay
import
logging
import
os
import
keras
import
numpy
as
np
class
TestLoss
:
def
test_l_p_loss
(
self
):
model
=
keras
.
Sequential
()
model
.
add
(
keras
.
layers
.
Lambda
(
lambda
x
:
x
,
input_shape
=
(
None
,
)))
model
.
compile
(
optimizer
=
keras
.
optimizers
.
Adam
(),
loss
=
l_p_loss
(
2
))
hist
=
model
.
fit
(
np
.
array
([
1
,
0
,
2
,
0.5
]),
np
.
array
([
1
,
1
,
0
,
0.5
]),
epochs
=
1
)
assert
hist
.
history
[
'
loss
'
][
0
]
==
1.25
model
.
compile
(
optimizer
=
keras
.
optimizers
.
Adam
(),
loss
=
l_p_loss
(
3
))
hist
=
model
.
fit
(
np
.
array
([
1
,
0
,
-
2
,
0.5
]),
np
.
array
([
1
,
1
,
0
,
0.5
]),
epochs
=
1
)
assert
hist
.
history
[
'
loss
'
][
0
]
==
2.25
class
TestLearningRateDecay
:
def
test_init
(
self
):
lr_decay
=
LearningRateDecay
()
assert
lr_decay
.
lr
==
{
'
lr
'
:
[]}
assert
lr_decay
.
base_lr
==
0.01
assert
lr_decay
.
drop
==
0.96
assert
lr_decay
.
epochs_drop
==
8
def
test_check_param
(
self
):
lr_decay
=
object
.
__new__
(
LearningRateDecay
)
assert
lr_decay
.
check_param
(
1
,
"
tester
"
)
==
1
assert
lr_decay
.
check_param
(
0.5
,
"
tester
"
)
==
0.5
with
pytest
.
raises
(
ValueError
)
as
e
:
lr_decay
.
check_param
(
0
,
"
tester
"
)
assert
"
tester is out of allowed range (0, 1]: tester=0
"
in
e
.
value
.
args
[
0
]
with
pytest
.
raises
(
ValueError
)
as
e
:
lr_decay
.
check_param
(
1.5
,
"
tester
"
)
assert
"
tester is out of allowed range (0, 1]: tester=1.5
"
in
e
.
value
.
args
[
0
]
assert
lr_decay
.
check_param
(
1.5
,
"
tester
"
,
upper
=
None
)
==
1.5
with
pytest
.
raises
(
ValueError
)
as
e
:
lr_decay
.
check_param
(
0
,
"
tester
"
,
upper
=
None
)
assert
"
tester is out of allowed range (0, inf): tester=0
"
in
e
.
value
.
args
[
0
]
assert
lr_decay
.
check_param
(
0.5
,
"
tester
"
,
lower
=
None
)
==
0.5
with
pytest
.
raises
(
ValueError
)
as
e
:
lr_decay
.
check_param
(
0.5
,
"
tester
"
,
lower
=
None
,
upper
=
0.2
)
assert
"
tester is out of allowed range (-inf, 0.2]: tester=0.5
"
in
e
.
value
.
args
[
0
]
assert
lr_decay
.
check_param
(
10
,
"
tester
"
,
upper
=
None
,
lower
=
None
)
def
test_on_epoch_begin
(
self
):
lr_decay
=
LearningRateDecay
(
base_lr
=
0.02
,
drop
=
0.95
,
epochs_drop
=
2
)
model
=
keras
.
Sequential
()
model
.
add
(
keras
.
layers
.
Dense
(
1
,
input_dim
=
1
))
model
.
compile
(
optimizer
=
keras
.
optimizers
.
Adam
(),
loss
=
l_p_loss
(
2
))
model
.
fit
(
np
.
array
([
1
,
0
,
2
,
0.5
]),
np
.
array
([
1
,
1
,
0
,
0.5
]),
epochs
=
5
,
callbacks
=
[
lr_decay
])
assert
lr_decay
.
lr
[
'
lr
'
]
==
[
0.02
,
0.02
,
0.02
*
0.95
,
0.02
*
0.95
,
0.02
*
0.95
*
0.95
]
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment