Skip to content
Snippets Groups Projects
Commit e9a357b7 authored by lukas leufen's avatar lukas leufen
Browse files

l_p_loss and lrdecay implementation

See merge request toar/machinelearningtools!7
parents 430cc664 0ec29f6a
No related branches found
No related tags found
2 merge requests!9new version v0.2.0,!7l_p_loss and lrdecay implementation
Pipeline #25749 passed
...@@ -2,7 +2,76 @@ __author__ = 'Lukas Leufen' ...@@ -2,7 +2,76 @@ __author__ = 'Lukas Leufen'
__date__ = '2019-10-21' __date__ = '2019-10-21'
import logging
import keras
import keras.backend as K
import math
from typing import Union
import numpy as np
def to_list(arg): def to_list(arg):
if not isinstance(arg, list): if not isinstance(arg, list):
arg = [arg] arg = [arg]
return arg return arg
def l_p_loss(power: int):
"""
Calculate the L<p> loss for given power p. L1 (p=1) is equal to mean absolute error (MAE), L2 (p=2) is to mean
squared error (MSE), ...
:param power: set the power of the error calculus
:return: loss for given power
"""
def loss(y_true, y_pred):
return K.mean(K.pow(K.abs(y_pred - y_true), power), axis=-1)
return loss
class LearningRateDecay(keras.callbacks.History):
"""
Decay learning rate during model training. Start with a base learning rate and lower this rate after every
n(=epochs_drop) epochs by drop value (0, 1], drop value = 1 means no decay in learning rate.
"""
def __init__(self, base_lr: float = 0.01, drop: float = 0.96, epochs_drop: int = 8):
super().__init__()
self.lr = {'lr': []}
self.base_lr = self.check_param(base_lr, 'base_lr')
self.drop = self.check_param(drop, 'drop')
self.epochs_drop = self.check_param(epochs_drop, 'epochs_drop', upper=None)
@staticmethod
def check_param(value: float, name: str, lower: Union[float, None] = 0, upper: Union[float, None] = 1):
"""
Check if given value is in interval. The left (lower) endpoint is open, right (upper) endpoint is closed. To
only one side of the interval, set the other endpoint to None. If both ends are set to None, just return the
value without any check.
:param value: value to check
:param name: name of the variable to display in error message
:param lower: left (lower) endpoint of interval, opened
:param upper: right (upper) endpoint of interval, closed
:return: unchanged value or raise ValueError
"""
if lower is None:
lower = -np.inf
if upper is None:
upper = np.inf
if lower < value <= upper:
return value
else:
raise ValueError(f"{name} is out of allowed range ({lower}, {upper}{')' if upper == np.inf else ']'}: "
f"{name}={value}")
def on_epoch_begin(self, epoch: int, logs=None):
"""
Lower learning rate every epochs_drop epochs by factor drop.
:param epoch: current epoch
:param logs: ?
:return: update keras learning rate
"""
current_lr = self.base_lr * math.pow(self.drop, math.floor(epoch / self.epochs_drop))
K.set_value(self.model.optimizer.lr, current_lr)
self.lr['lr'].append(current_lr)
logging.info(f"Set learning rate to {current_lr}")
return K.get_value(self.model.optimizer.lr)
import pytest
from src.helpers import l_p_loss, LearningRateDecay
import logging
import os
import keras
import numpy as np
class TestLoss:
def test_l_p_loss(self):
model = keras.Sequential()
model.add(keras.layers.Lambda(lambda x: x, input_shape=(None, )))
model.compile(optimizer=keras.optimizers.Adam(), loss=l_p_loss(2))
hist = model.fit(np.array([1, 0, 2, 0.5]), np.array([1, 1, 0, 0.5]), epochs=1)
assert hist.history['loss'][0] == 1.25
model.compile(optimizer=keras.optimizers.Adam(), loss=l_p_loss(3))
hist = model.fit(np.array([1, 0, -2, 0.5]), np.array([1, 1, 0, 0.5]), epochs=1)
assert hist.history['loss'][0] == 2.25
class TestLearningRateDecay:
def test_init(self):
lr_decay = LearningRateDecay()
assert lr_decay.lr == {'lr': []}
assert lr_decay.base_lr == 0.01
assert lr_decay.drop == 0.96
assert lr_decay.epochs_drop == 8
def test_check_param(self):
lr_decay = object.__new__(LearningRateDecay)
assert lr_decay.check_param(1, "tester") == 1
assert lr_decay.check_param(0.5, "tester") == 0.5
with pytest.raises(ValueError) as e:
lr_decay.check_param(0, "tester")
assert "tester is out of allowed range (0, 1]: tester=0" in e.value.args[0]
with pytest.raises(ValueError) as e:
lr_decay.check_param(1.5, "tester")
assert "tester is out of allowed range (0, 1]: tester=1.5" in e.value.args[0]
assert lr_decay.check_param(1.5, "tester", upper=None) == 1.5
with pytest.raises(ValueError) as e:
lr_decay.check_param(0, "tester", upper=None)
assert "tester is out of allowed range (0, inf): tester=0" in e.value.args[0]
assert lr_decay.check_param(0.5, "tester", lower=None) == 0.5
with pytest.raises(ValueError) as e:
lr_decay.check_param(0.5, "tester", lower=None, upper=0.2)
assert "tester is out of allowed range (-inf, 0.2]: tester=0.5" in e.value.args[0]
assert lr_decay.check_param(10, "tester", upper=None, lower=None)
def test_on_epoch_begin(self):
lr_decay = LearningRateDecay(base_lr=0.02, drop=0.95, epochs_drop=2)
model = keras.Sequential()
model.add(keras.layers.Dense(1, input_dim=1))
model.compile(optimizer=keras.optimizers.Adam(), loss=l_p_loss(2))
model.fit(np.array([1, 0, 2, 0.5]), np.array([1, 1, 0, 0.5]), epochs=5, callbacks=[lr_decay])
assert lr_decay.lr['lr'] == [0.02, 0.02, 0.02*0.95, 0.02*0.95, 0.02*0.95*0.95]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment