Skip to content
Snippets Groups Projects

Develop intelli o3 ts

Merged Ghost User requested to merge develop_IntelliO3-ts into IntelliO3-ts
2 files
+ 111
4
Compare changes
  • Side-by-side
  • Inline

Files

@@ -634,7 +634,7 @@ class PlotBootstrapSkillScore(AbstractPlotClass):
name skill_score_clim_{extra_name_tag}{model_setup}.pdf and resolution of 500dpi.
"""
def __init__(self, data: Dict, plot_folder: str = ".", model_setup: str = ""):
def __init__(self, data: Dict, plot_folder: str = ".", model_setup: str = "", separate_vars=None,):
"""
Sets attributes and create plot
:param data: dictionary with station names as keys and 2D xarrays as values, consist on axis ahead and terms.
@@ -642,11 +642,17 @@ class PlotBootstrapSkillScore(AbstractPlotClass):
:param model_setup: architecture type to specify plot name (default "CNN")
"""
super().__init__(plot_folder, f"skill_score_bootstrap_{model_setup}")
if separate_vars is None:
separate_vars = ['o3']
self._labels = None
self._x_name = "boot_var"
self._data = self._prepare_data(data)
self._plot()
self._save()
self.plot_name += '_separated'
self._plot(separate_vars=separate_vars)
self._save(bbox_inches='tight')
def _prepare_data(self, data: Dict) -> pd.DataFrame:
"""
@@ -667,9 +673,107 @@ class PlotBootstrapSkillScore(AbstractPlotClass):
"""
return "" if score_only else "terms and "
def _plot(self):
def _plot(self, separate_vars: str = None):
"""
Main plot function to plot climatological skill score.
Main plot function to plot boots.
"""
if separate_vars is None:
self._plot_all_variables()
else:
self._plot_selected_variables(separate_vars)
def _plot_selected_variables(self, separate_vars: List[str] = ['o3']):
data = self._data
self.raise_error_if_separate_vars_do_not_exist(data, separate_vars)
all_variables = self._get_unique_values_from_column_of_df(data, 'boot_var')
remaining_vars = helpers.list_pop(all_variables, separate_vars)
data_first = self._select_data(df=data, variables=separate_vars, column_name='boot_var')
data_second = self._select_data(df=data, variables=remaining_vars, column_name='boot_var')
fig, ax = plt.subplots(nrows=1, ncols=2,
gridspec_kw={'width_ratios': [len(separate_vars),
len(remaining_vars)
]
}
)
if len(separate_vars) > 1:
first_box_width = .8
else:
first_box_width = 2.
sns.boxplot(x=self._x_name, y="data", hue="ahead", data=data_first, ax=ax[0], whis=1., palette="Blues_d",
showmeans=True, meanprops={"markersize": 1, "markeredgecolor": "k"},
flierprops={"marker": "."}, width=first_box_width
)
ax[0].set(ylabel=f"skill score", xlabel="")
sns.boxplot(x=self._x_name, y="data", hue="ahead", data=data_second, ax=ax[1], whis=1., palette="Blues_d",
showmeans=True, meanprops={"markersize": 1, "markeredgecolor": "k"},
flierprops={"marker": "."},
)
ax[1].set(ylabel="", xlabel="")
ax[1].yaxis.tick_right()
handles, _ = ax[1].get_legend_handles_labels()
for sax in ax:
matplotlib.pyplot.sca(sax)
sax.axhline(y=0, color="grey", linewidth=.5)
plt.xticks(rotation=45, ha='right')
sax.legend_.remove()
fig.legend(handles, self._labels, loc='upper center', ncol=len(handles)+1,)
def align_yaxis(ax1, ax2):
"""
Align zeros of the two axes, zooming them out by same ratio
This function is copy pasted from https://stackoverflow.com/a/41259922
"""
axes = (ax1, ax2)
extrema = [ax.get_ylim() for ax in axes]
tops = [extr[1] / (extr[1] - extr[0]) for extr in extrema]
# Ensure that plots (intervals) are ordered bottom to top:
if tops[0] > tops[1]:
axes, extrema, tops = [list(reversed(l)) for l in (axes, extrema, tops)]
# How much would the plot overflow if we kept current zoom levels?
tot_span = tops[1] + 1 - tops[0]
b_new_t = extrema[0][0] + tot_span * (extrema[0][1] - extrema[0][0])
t_new_b = extrema[1][1] - tot_span * (extrema[1][1] - extrema[1][0])
axes[0].set_ylim(extrema[0][0], b_new_t)
axes[1].set_ylim(t_new_b, extrema[1][1])
align_yaxis(ax[0], ax[1])
align_yaxis(ax[0], ax[1])
# plt.savefig('MYBOOTTESTPLOT.pdf', bbox_inches='tight')
@staticmethod
def _select_data(df: pd.DataFrame, variables: List[str], column_name: str) -> pd.DataFrame:
for i, variable in enumerate(variables):
if i == 0:
selected_data = df.loc[df[column_name] == variable]
else:
tmp_var = df.loc[df[column_name] == variable]
selected_data = pd.concat([selected_data, tmp_var], axis=0)
return selected_data
def raise_error_if_separate_vars_do_not_exist(self, data, separate_vars):
if not self._variables_exist_in_df(df=data, variables=separate_vars):
raise ValueError(f"At least one entry of `separate_vars' does not exist in `self.data' ")
@staticmethod
def _get_unique_values_from_column_of_df(df: pd.DataFrame, column_name: str) -> List:
return list(df[column_name].unique())
def _variables_exist_in_df(self, df: pd.DataFrame, variables: List[str], column_name: str = 'boot_var'):
vars_in_df = set(self._get_unique_values_from_column_of_df(df, column_name))
return set(variables).issubset(vars_in_df)
def _plot_all_variables(self):
"""
"""
fig, ax = plt.subplots()
sns.boxplot(x=self._x_name, y="data", hue="ahead", data=self._data, ax=ax, whis=1., palette="Blues_d",
Loading