Skip to content
Snippets Groups Projects

model class

Merged Ghost User requested to merge lukas_issue029_feat_model-class into develop
10 files
+ 365
164
Compare changes
  • Side-by-side
  • Inline
Files
10
+ 156
0
__author__ = "Lukas Leufen"
__date__ = '2019-12-12'
from abc import ABC
from typing import Any, Callable
import keras
from src import helpers
class AbstractModelClass(ABC):
"""
The AbstractModelClass provides a unified skeleton for any model provided to the machine learning workflow. The
model can always be accessed by calling ModelClass.model or directly by an model method without parsing the model
attribute name (e.g. ModelClass.model.compile -> ModelClass.compile). Beside the model, this class provides the
corresponding loss function.
"""
def __init__(self) -> None:
"""
Predefine internal attributes for model and loss.
"""
self.__model = None
self.__loss = None
def __getattr__(self, name: str) -> Any:
"""
Is called if __getattribute__ is not able to find requested attribute. Normally, the model class is saved into
a variable like `model = ModelClass()`. To bypass a call like `model.model` to access the _model attribute,
this method tries to search for the named attribute in the self.model namespace and returns this attribute if
available. Therefore, following expression is true: `ModelClass().compile == ModelClass().model.compile` as long
the called attribute/method is not part if the ModelClass itself.
:param name: name of the attribute or method to call
:return: attribute or method from self.model namespace
"""
return self.model.__getattribute__(name)
@property
def model(self) -> keras.Model:
"""
The model property containing a keras.Model instance.
:return: the keras model
"""
return self.__model
@model.setter
def model(self, value):
self.__model = value
@property
def loss(self) -> Callable:
"""
The loss property containing a callable loss function. The loss function can be any keras loss or a customised
function. If the loss is a customised function, it must contain the internal loss(y_true, y_pred) function:
def customised_loss(args):
def loss(y_true, y_pred):
return actual_function(y_true, y_pred, args)
return loss
:return: the loss function
"""
return self.__loss
@loss.setter
def loss(self, value) -> None:
self.__loss = value
def get_settings(self):
return dict((k, v) for (k, v) in self.__dict__.items() if not k.startswith("_AbstractModelClass__"))
class MyLittleModel(AbstractModelClass):
"""
A customised model with a 1x1 Conv, and 4 Dense layers (64, 32, 16, window_lead_time), where the last layer is the
output layer depending on the window_lead_time parameter. Dropout is used between the Convolution and the first
Dense layer.
"""
def __init__(self, window_history_size, window_lead_time, channels):
"""
Sets model and loss depending on the given arguments.
:param activation: activation function
:param window_history_size: number of historical time steps included in the input data
:param channels: number of variables used in input data
:param regularizer: <not used here>
:param dropout_rate: dropout rate used in the model [0, 1)
:param window_lead_time: number of time steps to forecast in the output layer
"""
super().__init__()
# settings
self.window_history_size = window_history_size
self.window_lead_time = window_lead_time
self.channels = channels
self.dropout_rate = 0.1
self.regularizer = keras.regularizers.l2(0.1)
self.initial_lr = 1e-2
self.optimizer = keras.optimizers.SGD(lr=self.initial_lr, momentum=0.9)
self.lr_decay = helpers.LearningRateDecay(base_lr=self.initial_lr, drop=.94, epochs_drop=10)
self.epochs = 2
self.batch_size = int(256)
self.activation = keras.layers.PReLU
# apply to model
self.set_model()
self.set_loss()
def set_model(self):
"""
Build the model.
:param activation: activation function
:param window_history_size: number of historical time steps included in the input data
:param channels: number of variables used in input data
:param dropout_rate: dropout rate used in the model [0, 1)
:param window_lead_time: number of time steps to forecast in the output layer
:return: built keras model
"""
# add 1 to window_size to include current time step t0
x_input = keras.layers.Input(shape=(self.window_history_size + 1, 1, self.channels))
x_in = keras.layers.Conv2D(32, (1, 1), padding='same', name='{}_Conv_1x1'.format("major"))(x_input)
x_in = self.activation(name='{}_conv_act'.format("major"))(x_in)
x_in = keras.layers.Flatten(name='{}'.format("major"))(x_in)
x_in = keras.layers.Dropout(self.dropout_rate, name='{}_Dropout_1'.format("major"))(x_in)
x_in = keras.layers.Dense(64, name='{}_Dense_64'.format("major"))(x_in)
x_in = self.activation()(x_in)
x_in = keras.layers.Dense(32, name='{}_Dense_32'.format("major"))(x_in)
x_in = self.activation()(x_in)
x_in = keras.layers.Dense(16, name='{}_Dense_16'.format("major"))(x_in)
x_in = self.activation()(x_in)
x_in = keras.layers.Dense(self.window_lead_time, name='{}_Dense'.format("major"))(x_in)
out_main = self.activation()(x_in)
self.model = keras.Model(inputs=x_input, outputs=[out_main])
def set_loss(self):
"""
Set the loss
:return: loss function
"""
self.loss = keras.losses.mean_squared_error
Loading