Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Merge requests
!303
Resolve "IntelliO3 implementation into MLAir"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Resolve "IntelliO3 implementation into MLAir"
vincent_issue310-intellio3-implementation-into-mlair
into
develop
Overview
0
Commits
2
Pipelines
3
Changes
1
Merged
Ghost User
requested to merge
vincent_issue310-intellio3-implementation-into-mlair
into
develop
3 years ago
Overview
0
Commits
2
Pipelines
3
Changes
1
Expand
Closes
#310 (closed)
Edited
3 years ago
by
Ghost User
0
0
Merge request reports
Viewing commit
6ee12817
Prev
Next
Show latest version
1 file
+
3
−
3
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
6ee12817
Updated test to test on IntelliO3_ts_architecture instead of the old MyPaperModel
· 6ee12817
v.gramlich1
authored
3 years ago
test/test_model_modules/test_model_class.py
+
3
−
3
Options
import
keras
import
pytest
from
mlair.model_modules.model_class
import
MyPaperModel
from
mlair.model_modules.model_class
import
IntelliO3_ts_architecture
class
Test
MyPaperModel
:
class
Test
IntelliO3_ts_architecture
:
@pytest.fixture
def
mpm
(
self
):
return
MyPaperModel
(
input_shape
=
[(
7
,
1
,
9
)],
output_shape
=
[(
4
,)])
return
IntelliO3_ts_architecture
(
input_shape
=
[(
7
,
1
,
9
)],
output_shape
=
[(
4
,)])
def
test_init
(
self
,
mpm
):
# check if loss number of loss functions fit to model outputs
Loading