Skip to content
Snippets Groups Projects

Resolve "release v1.4.0"

Merged Ghost User requested to merge release_v1.4.0 into master
1 file
+ 25
10
Compare changes
  • Side-by-side
  • Inline
+ 25
10
@@ -11,7 +11,7 @@ from matplotlib import pyplot as plt
from scipy import signal
import xarray as xr
from mlair.helpers import to_list, TimeTrackingWrapper
from mlair.helpers import to_list, TimeTrackingWrapper, TimeTracking
class FIRFilter:
@@ -258,14 +258,19 @@ class ClimateFIRFilter:
# combine historical data / observation [t0-length,t0] and climatological statistics [t0+1,t0+length]
history = self._shift_data(data, range(-length, 1), time_dim, var_dim, new_dim)
future = self._shift_data(apriori, range(1, length + 1), time_dim, var_dim, new_dim)
filter_input_data = history.combine_first(future)
filter_input_data = xr.concat([history.dropna(time_dim), future], dim=new_dim, join="left")
# filter_input_data = history.combine_first(future)
time_axis = filter_input_data.coords["datetime"]
# apply vectorized fir filter along the tmp dimension
filt = xr.apply_ufunc(fir_filter_vectorized, filter_input_data, time_axis,
input_core_dims=[[new_dim], []], output_core_dims=[[new_dim]], vectorize=True,
kwargs={"fs": fs, "cutoff_high": cutoff_high, "order": order,
"causal": False, "padlen": int(min(padlen_factor, 1) * length)})
kwargs = {"fs": fs, "cutoff_high": cutoff_high, "order": order,
"causal": False, "padlen": int(min(padlen_factor, 1) * length)}
with TimeTracking():
filt = fir_filter_numpy_vectorized(filter_input_data, var_dim, kwargs)
# with TimeTracking():
# filt = xr.apply_ufunc(fir_filter_vectorized, filter_input_data, time_axis,
# input_core_dims=[[new_dim], []], output_core_dims=[[new_dim]], vectorize=True,
# kwargs=kwargs)
# plot
if self.plot_path is not None:
@@ -383,13 +388,23 @@ def fir_filter(data, fs, order=5, cutoff_low=None, cutoff_high=None, window="ham
return filtered, h
def fir_filter_vectorized(data, time_stamp, fs, order=5, cutoff_low=None, cutoff_high=None, window="hamming", h=None,
def fir_filter_numpy_vectorized(filter_input_data, var_dim, kwargs):
filt_np = xr.DataArray(np.nan, coords=filter_input_data.coords)
for var in filter_input_data.coords[var_dim]:
a = np.apply_along_axis(fir_filter_vectorized, 2, filter_input_data.sel({var_dim: var}).values, **kwargs)
filt_np.loc[{var_dim: var}] = a
return filt_np
def fir_filter_vectorized(data, time_stamp=None, fs=1, order=5, cutoff_low=None, cutoff_high=None, window="hamming",
h=None,
causal=True,
padlen=None):
"""Expects numpy array."""
pd_date = pd.to_datetime(time_stamp)
if pd_date.day == 1 and pd_date.month in [1, 7]:
logging.info(time_stamp)
if time_stamp is not None:
pd_date = pd.to_datetime(time_stamp)
if pd_date.day == 1 and pd_date.month in [1, 7]:
logging.info(time_stamp)
sel = ~np.isnan(data)
res = np.empty_like(data)
if h is None:
Loading