Skip to content
Snippets Groups Projects

Pair issue048 feat create shuffled data

Compare and
4 files
+ 173
1
Compare changes
  • Side-by-side
  • Inline
Files
4
+ 97
0
__author__ = 'Felix Kleinert, Lukas Leufen'
__date__ = '2020-02-07'
from src.run_modules.run_environment import RunEnvironment
from src.data_handling.data_generator import DataGenerator
import numpy as np
import logging
import xarray as xr
import os
import re
class BootStraps(RunEnvironment):
def __init__(self):
super().__init__()
self.test_data: DataGenerator = self.data_store.get("generator", "general.test")
self.number_bootstraps = 200
self.bootstrap_path = self.data_store.get("bootstrap_path", "general")
self.create_shuffled_data()
def create_shuffled_data(self):
"""
Create shuffled data. Use original test data, add dimension 'boots' with length number of bootstraps and insert
randomly selected variables. If there is a suitable local file for requested window size and number of
bootstraps, no additional file will be created inside this function.
"""
variables_str = '_'.join(sorted(self.test_data.variables))
window = self.test_data.window_history_size
for station in self.test_data.stations:
valid, nboot = self.valid_bootstrap_file(station, variables_str, window)
if not valid:
logging.info(f'create bootstap data for {station}')
hist, _ = self.test_data[station]
data = hist.copy()
file_name = f"{station}_{variables_str}_hist{window}_nboots{nboot}_shuffled.nc"
file_path = os.path.join(self.bootstrap_path, file_name)
data = data.expand_dims({'boots': range(nboot)}, axis=-1)
shuffled_variable = np.full(data.shape, np.nan)
for i, var in enumerate(data.coords['variables']):
single_variable = data.sel(variables=var).values
shuffled_variable[..., i, :] = self.shuffle_single_variable(single_variable)
shuffled_data = xr.DataArray(shuffled_variable, coords=data.coords, dims=data.dims)
shuffled_data.to_netcdf(file_path)
def valid_bootstrap_file(self, station, variables, window):
"""
Compare local bootstrap file with given settings for station, variables, window and number of bootstraps. If a
match was found, this method returns a tuple (True, None). In any other case, it returns (False, max_nboot),
where max_nboot is the highest boot number found in the local storage. A match is defined so that the window
length is ge than given window size form args and the number of boots is also ge than the given number of boots
from this class. Furthermore, this functions deletes local files, if the match the station pattern but don't fit
the window and bootstrap condition. This is performed, because it is assumed, that the corresponding file will
be created with a longer or at least same window size and numbers of bootstraps.
:param station:
:param variables:
:param window:
:return:
"""
regex = re.compile(rf"{station}_{variables}_hist(\d+)_nboots(\d+)_shuffled*")
max_nboot = self.number_bootstraps
for file in os.listdir(self.bootstrap_path):
match = regex.match(file)
if match:
window_file = int(match.group(1))
nboot_file = int(match.group(2))
max_nboot = max([max_nboot, nboot_file])
if (window_file >= window) and (nboot_file >= self.number_bootstraps):
return True, None
else:
os.remove(os.path.join(self.bootstrap_path, file))
return False, max_nboot
@staticmethod
def shuffle_single_variable(data: np.ndarray) -> np.ndarray:
orig_shape = data.shape
size = orig_shape
return np.random.choice(data.reshape(-1,), size=size)
if __name__ == "__main__":
from src.run_modules.experiment_setup import ExperimentSetup
from src.run_modules.run_environment import RunEnvironment
from src.run_modules.pre_processing import PreProcessing
formatter = '%(asctime)s - %(levelname)s: %(message)s [%(filename)s:%(funcName)s:%(lineno)s]'
logging.basicConfig(format=formatter, level=logging.INFO)
with RunEnvironment():
ExperimentSetup(stations=['DEBW107', 'DEBY081', 'DEBW013'],
station_type='background', trainable=True, window_history_size=9)
PreProcessing()
BootStraps()
Loading