Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • develop
  • main
2 results

Target

Select target project
  • esde/toar-public/ml_toar_station_classification
1 result
Select Git revision
  • develop
  • main
2 results
Show changes
Showing
with 12785 additions and 2164 deletions
## TOAR-classifier v2: A data-driven classification tool for global air quality stations
This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
<img src="./figures/toar_classifier_v2.png" alt="My image" with="200">
### Files
- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model.
- `figures` contains all the figures.
- `TOAR-classifier_v2.ipynb` is the notebook containing the code.
- `requirements.txt` contains all the necessary packages.
### Run the Code
**Note:** This has been tested on Ubuntu 24.04.
1. Install Python 3 if not already installed (most Linux systems have Python pre-installed).
2. Install Jupyter Notebook:
- `pip install notebook` (for Jupyter Notebook) or
- `pip install jupyterlab` (for JupyterLab).
3. clone the project by running the following
- `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git`
4. Change directory to ml_toar_station_classification
- `cd ml_toar_station_classification`
5. Creat virtual environment
- `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient
6. Activate the created venv
-`python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"`
#### Install required package
1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2`
2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell
Run the code cell by cell.
### Citation
If you use this please cite
@article{Mache2025TOARClassifier,
author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz},
title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations},
year = {2025},
note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)},
url = {}
}
## TOAR-classifier v2: A data-driven classification tool for global air quality stations
This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
<img src="./figures/toar_classifier_v2.png" alt="My image" with="200">
### Files
- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model.
- `figures` contains all the figures.
- `TOAR-classifier_v2.ipynb` is the notebook containing the code.
- `requirements.txt` contains all the necessary packages.
### Run the Code
**Note:** This has been tested on Ubuntu 24.04.
1. Install Python 3 if not already installed (most Linux systems have Python pre-installed).
2. Install Jupyter Notebook:
- `pip install notebook` (for Jupyter Notebook) or
- `pip install jupyterlab` (for JupyterLab).
3. clone the project by running the following
- `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git`
4. Change directory to ml_toar_station_classification
- `cd ml_toar_station_classification`
5. Creat virtual environment
- `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient
6. Activate the created venv
- `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"`
#### Install required package
1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2`
2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell
Run the code cell by cell.
### Citation
If you use this please cite
@article{Mache2025TOARClassifier,
author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz},
title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations},
year = {2025},
note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)},
url = {}
}
## TOAR-classifier v2: A data-driven classification tool for global air quality stations
This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
<img src="./figures/toar_classifier_v2.png" alt="My image" with="200">
### Files
- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model.
- `figures` contains all the figures.
- `TOAR-classifier_v2.ipynb` is the notebook containing the code.
- `requirements.txt` contains all the necessary packages.
### Run the Code
**Note:** This has been tested on Ubuntu 24.04.
1. Install Python 3 if not already installed (most Linux systems have Python pre-installed).
2. Install Jupyter Notebook:
- `pip install notebook` (for Jupyter Notebook) or
- `pip install jupyterlab` (for JupyterLab).
3. clone the project by running the following
- `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git`
4. Change directory to ml_toar_station_classification
- `cd ml_toar_station_classification`
5. Creat virtual environment
- `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient
6. Activate the created venv
- `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"`
#### Install required package
1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2`
2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell
Run the code cell by cell.
### Citation
If you use this please cite
@article{Mache2025TOARClassifier,
author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz},
title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations},
year = {2025},
note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)},
url = {}
}
## TOAR-classifier v2: A data-driven classification tool for global air quality stations
This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
<img src="./figures/toar_classifier_v2.png" alt="My image" with="200">
### Files
- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model.
- `figures` contains all the figures.
- `TOAR-classifier_v2.ipynb` is the notebook containing the code.
- `requirements.txt` contains all the necessary packages.
### Run the Code
**Note:** This has been tested on Ubuntu 24.04.
1. Install Python 3 if not already installed (most Linux systems have Python pre-installed).
2. Install Jupyter Notebook:
- `pip install notebook` (for Jupyter Notebook) or
- `pip install jupyterlab` (for JupyterLab).
3. clone the project by running the following
- `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git`
4. Change directory to ml_toar_station_classification
- `cd ml_toar_station_classification`
5. Creat virtual environment
- `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient
6. Activate the created venv
- `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"`
#### Install required package
1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2`
2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell
Run the code cell by cell.
### Citation
If you use this please cite
@article{Mache2025TOARClassifier,
author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz},
title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations},
year = {2025},
note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)},
url = {}
}
## TOAR-classifier v2: A data-driven classification tool for global air quality stations
This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
<img src="./figures/toar_classifier_v2.png" alt="My image" with="200">
### Files
- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model.
- `figures` contains all the figures.
- `TOAR-classifier_v2.ipynb` is the notebook containing the code.
- `requirements.txt` contains all the necessary packages.
### Run the Code
**Note:** This has been tested on Ubuntu 24.04.
1. Install Python 3 if not already installed (most Linux systems have Python pre-installed).
2. Install Jupyter Notebook:
- `pip install notebook` (for Jupyter Notebook) or
- `pip install jupyterlab` (for JupyterLab).
3. clone the project by running the following command
- `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git`
4. Change directory to ml_toar_station_classification
- `cd ml_toar_station_classification`
5. Creat virtual environment
- `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient
6. Activate the created venv
- `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"`
#### Install required package
1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2`
2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell
Run the code cell by cell.
### Citation
If you use this please cite
@article{Mache2025TOARClassifier,
author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz},
title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations},
year = {2025},
note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)},
url = {}
}
## TOAR-classifier v2: A data-driven classification tool for global air quality stations
This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
<img src="./figures/toar_classifier_v2.png" alt="My image" with="200">
### Files
- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model.
- `figures` contains all the figures.
- `TOAR-classifier_v2.ipynb` is the notebook containing the code.
- `requirements.txt` contains all the necessary packages.
### Run the Code
**Note:** This has been tested on Ubuntu 24.04.
1. Install Python 3 if not already installed (most Linux systems have Python pre-installed).
2. Install Jupyter Notebook:
- `pip install notebook` (for Jupyter Notebook) or
- `pip install jupyterlab` (for JupyterLab).
3. clone the project by running the following command
- `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git`
4. Change directory to ml_toar_station_classification
- `cd ml_toar_station_classification`
5. Creat virtual environment
- `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient
6. Activate the created venv
- `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"`
#### Install required package
1. open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2`
2. Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell
Run the code cell by cell.
### Citation
If you use this please cite
@article{Mache2025TOARClassifier,
author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz},
title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations},
year = {2025},
note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)},
url = {}
}
## TOAR-classifier v2: A data-driven classification tool for global air quality stations
This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
<img src="./figures/toar_classifier_v2.png" alt="My image" with="200">
### Files
- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model.
- `figures` contains all the figures.
- `TOAR-classifier_v2.ipynb` is the notebook containing the code.
- `requirements.txt` contains all the necessary packages.
### Run the Code
**Note:** This has been tested on Ubuntu 24.04.
1. Install Python 3 if not already installed (most Linux systems have Python pre-installed).
2. Install Jupyter Notebook:
- `pip install notebook` (for Jupyter Notebook) or
- `pip install jupyterlab` (for JupyterLab).
3. clone the project by running the following command
- `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git`
4. Change directory to ml_toar_station_classification
- `cd ml_toar_station_classification`
5. Creat virtual environment
- `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient
6. Activate the created venv
- `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"`
7. Install required package
- open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2`
- Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell
8. Run the code cell by cell.
### Citation
If you use this please cite
@article{Mache2025TOARClassifier,
author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz},
title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations},
year = {2025},
note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)},
url = {}
}
fancyimpute
\ No newline at end of file
fancyimpute
catboost
pandas
lightgbm
\ No newline at end of file
fancyimpute
catboost
pandas
lightgbm
imblearn
seaborn
\ No newline at end of file
fancyimpute
catboost
pandas
lightgbm
imblearn
seaborn
\ No newline at end of file
This diff is collapsed.
The MIT License (MIT)
Copyright (c) 2025 Ramiyou Karim Mache
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
## TOAR-classifier v2: A data-driven classification tool for global air quality stations
This study develops a machine learning approach to classify 23,974 air quality monitoring stations in the TOAR database as urban, suburban, or rural using K-means clustering and an ensemble of supervised classifiers. The proposed method outperforms existing classifications, improving suburban accuracy and providing a more reliable foundation for air quality assessments.
<img src="./figures/toar_classifier_v2.png" alt="My image" with="200">
### Files
- `data` is the folder containing all the data used in this work, including the predictions of station categories from the Machine Learning (ML) model.
- `figures` contains all the figures.
- `TOAR-classifier_v2.ipynb` is the notebook containing the code.
- `requirements.txt` contains all the necessary packages.
### Run the Code
**Note:** This has been tested on Ubuntu 24.04.
1. Install Python 3 if not already installed (most Linux systems have Python pre-installed).
2. Install Jupyter Notebook:
- `pip install notebook` (for Jupyter Notebook) or
- `pip install jupyterlab` (for JupyterLab).
3. clone the project by running the following command
- `git clone https://gitlab.jsc.fz-juelich.de/esde/toar-public/ml_toar_station_classification.git`
4. Change directory to ml_toar_station_classification
- `cd ml_toar_station_classification`
5. Creat virtual environment
- `python -m venv TOAR-classifier_v2` # feel free to change the virtual environment as convenient
6. Activate the created venv
- `python -m ipykernel install --user --name=TOAR-classifier_v2 --display-name "Python (TOAR-classifier_v2)"`
7. Install required package
- open jupyter notebook, `jupyter-notebook` and select kernel `TOAR-classifier_v2`
- Install all the required packages for the project by uncommenting the first cell in the notebook and running the cell
8. Run the code cell by cell.
### Citation
If you use this please cite
@article{Mache2025TOARClassifier,
author = {Ramiyou Karim Mache and Sabine Schröder and Michael Langguth and Ankit Patnala and Martin G. Schultz},
title = {TOAR-classifier v2: A data-driven classification tool for global air quality stations},
year = {2025},
note = {Correspondence: Ramiyou Karim Mache (k.mache@fz-juelich.de)},
url = {}
}
This diff is collapsed.
This diff is collapsed.
No preview for this file type
iter MultiClass
0 1.069128216
1 1.042953342
2 1.017912461
3 0.9968921858
4 0.9754479615
5 0.9555996272
6 0.93706008
7 0.9203007515
8 0.9037633678
9 0.8881411653
10 0.8753132889
11 0.8616175072
12 0.8499720611
13 0.8379787481
14 0.8263775291
15 0.8157326718
16 0.8061567701
17 0.7962116648
18 0.7869912311
19 0.7784220294
20 0.7698220403
21 0.7619665119
22 0.7559026452
23 0.7486211553
24 0.7418945498
25 0.735516285
26 0.7293641419
27 0.7237878217
28 0.7178318656
29 0.7126466155
30 0.7077487575
31 0.7027239652
32 0.6979574329
33 0.6944572533
34 0.6900948462
35 0.6860982156
36 0.6821123086
37 0.678311399
38 0.6746728676
39 0.6713455664
40 0.6680739051
41 0.6650171382
42 0.662370082
43 0.6592718124
44 0.6564118251
45 0.653560293
46 0.6508345136
47 0.6480136743
48 0.6455037003
49 0.6431032108
50 0.6405354911
51 0.6378216386
52 0.6353288322
53 0.6329861577
54 0.6310121556
55 0.6293005478
56 0.6272597921
57 0.6255684544
58 0.6237425068
59 0.6222898703
60 0.620681014
61 0.6189945313
62 0.617306813
63 0.6156328191
64 0.6140336555
65 0.61241497
66 0.6111134257
67 0.6098456804
68 0.6088015489
69 0.6077183173
70 0.6066148916
71 0.6054507192
72 0.6044848659
73 0.6032136189
74 0.6019520022
75 0.6008864725
76 0.5995748273
77 0.5985858207
78 0.5972475222
79 0.5962896421
80 0.5954565655
81 0.594347142
82 0.5930848949
83 0.5918171162
84 0.5908229378
85 0.5896816265
86 0.5890291142
87 0.5881718342
88 0.5874114276
89 0.5864917224
90 0.5855292392
91 0.5846690855
92 0.5839902834
93 0.5832186919
94 0.5826002936
95 0.5818754933
96 0.5810184405
97 0.5803611525
98 0.5794399178
99 0.5789844867
100 0.5780444609
101 0.5772046571
102 0.5764329802
103 0.5757047793
104 0.5749274682
105 0.5740482108
106 0.5732089829
107 0.5725769436
108 0.571839005
109 0.5713073973
110 0.5706814759
111 0.5701697274
112 0.5692867132
113 0.5682758954
114 0.5675940395
115 0.5668557653
116 0.5661484627
117 0.5654136214
118 0.5649557461
119 0.5642327281
120 0.5636429251
121 0.5631117857
122 0.5623700822
123 0.5618582818
124 0.5611888671
125 0.5606169054
126 0.5597927205
127 0.5590184471
128 0.5585137171
129 0.5579578217
130 0.5575555075
131 0.557420383
132 0.5566747729
133 0.5562254341
134 0.5554959029
135 0.5548538965
136 0.5541547539
137 0.5535385697
138 0.5530088609
139 0.5525577167
140 0.5519702339
141 0.5515115438
142 0.5509978413
143 0.5507005696
144 0.5501230405
145 0.5494646719
146 0.5487925139
147 0.5481729784
148 0.5477110063
149 0.5473219931
150 0.5469594515
151 0.5463956978
152 0.5459866361
153 0.5453335569
154 0.5445521528
155 0.5441797394
156 0.543823821
157 0.5434447839
158 0.5428436918
159 0.5422177572
160 0.5418416339
161 0.5414591231
162 0.5408916271
163 0.5404094366
164 0.5397956028
165 0.5395100663
166 0.5392287498
167 0.5386439608
168 0.5379808606
169 0.5372966106
170 0.5368705651
171 0.5362238052
172 0.5358635863
173 0.5353642756
174 0.5349569208
175 0.5342631612
176 0.5338392674
177 0.5334696899
178 0.5330067973
179 0.532722922
180 0.5324111584
181 0.5320328909
182 0.5315300705
183 0.5308233939
184 0.5305196356
185 0.5301314809
186 0.5296295378
187 0.5289957361
188 0.5287069718
189 0.5284227603
190 0.5280420602
191 0.5275193361
192 0.527194871
193 0.5268648507
194 0.5263540401
195 0.5257302306
196 0.5252982877
197 0.5249713779
198 0.524543374
199 0.5242271154
200 0.5237606351
201 0.5234395088
202 0.5232167653
203 0.5230026942
204 0.5225348533
205 0.5223259193
206 0.521469729
207 0.5208122721
208 0.5204403775
209 0.5201087621
210 0.5195171619
211 0.519055169
212 0.518401512
213 0.5181213379
214 0.5177515664
215 0.5174400311
216 0.5169210885
217 0.5165788832
218 0.5163851974
219 0.5160071045
220 0.5156582907
221 0.5153187635
222 0.5148764066
223 0.5144088838
224 0.5141618618
225 0.5136441504
226 0.5132189431
227 0.5127196216
228 0.5122743598
229 0.5119197812
230 0.5115819458
231 0.5111577971
232 0.5108212216
233 0.5104177754
234 0.5099852781
235 0.5098545708
236 0.5095464269
237 0.5091512211
238 0.5087207598
239 0.5084252682
240 0.508276854
241 0.5078337837
242 0.5074431026
243 0.5070429984
244 0.5063255597
245 0.5058869765
246 0.505559412
247 0.5051514233
248 0.5047602052
249 0.5044324014
250 0.5038085763
251 0.5033361746
252 0.5031348726
253 0.5026719954
254 0.5025022865
255 0.5022804357
256 0.5017926019
257 0.501473019
258 0.501059509
259 0.500818696
260 0.5001767565
261 0.4997227942
262 0.4994334944
263 0.4990710336
264 0.4986606057
265 0.4981912215
266 0.4977900588
267 0.4973926963
268 0.4971472287
269 0.4968162707
270 0.4963097752
271 0.4957588446
272 0.4953050856
273 0.4948897065
274 0.4945581409
275 0.4942293872
276 0.4938723102
277 0.493438936
278 0.4929858269
279 0.492444684
280 0.4919027387
281 0.4915760409
282 0.4911420173
283 0.4909797236
284 0.4906765683
285 0.4903992882
286 0.4899780299
287 0.4897100967
288 0.489250715
289 0.4889197057
290 0.4885444719
291 0.488193052
292 0.4879034816
293 0.4873262033
294 0.4868692137
295 0.4866031978
296 0.4863268782
297 0.4859002651
298 0.4855427769
299 0.4852387628
300 0.4848681288
301 0.4843284035
302 0.483988264
303 0.4837641663
304 0.4833949354
305 0.4831110506
306 0.4828705442
307 0.4825532954
308 0.4820299291
309 0.4813930079
310 0.4811296096
311 0.4809503854
312 0.4806632385
313 0.4801167475
314 0.4796874799
315 0.4794503403
316 0.479163234
317 0.4788145138
318 0.4785442756
319 0.4782162195
320 0.4780126508
321 0.4777848686
322 0.4773375445
323 0.476947532
324 0.4766400107
325 0.4761774455
326 0.4758864036
327 0.4755945465
328 0.4751734126
329 0.4748301619
330 0.4745781385
331 0.47427384
332 0.4741183758
333 0.4739482852
334 0.4737451611
335 0.4735463008
336 0.4733595694
337 0.4731323312
338 0.4729604329
339 0.4726638587
340 0.4722777195
341 0.4720055804
342 0.4717427478
343 0.4715401079
344 0.4712473717
345 0.4711154451
346 0.4708821803
347 0.4704510456
348 0.4702292289
349 0.4700003728
350 0.4697112394
351 0.4694128447
352 0.4693554383
353 0.4689776889
354 0.4687893207
355 0.4685132854
356 0.4683506835
357 0.4681963778
358 0.4678520798
359 0.46757827
360 0.4671959181
361 0.4668601617
362 0.4665546784
363 0.4662695972
364 0.4660731793
365 0.4658855279
366 0.465622163
367 0.4653072681
368 0.4649624355
369 0.4645210542
370 0.4643391796
371 0.4640502207
372 0.4637747862
373 0.4635586204
374 0.4634409252
375 0.4629811287
376 0.4626423609
377 0.4624294183
378 0.4620537793
379 0.4618120408
380 0.4615869325
381 0.4613342187
382 0.461245836
383 0.460925297
384 0.4607462679
385 0.4604601287
386 0.4603546711
387 0.4601409297
388 0.459914509
389 0.4597026487
390 0.4593910431
391 0.4590541385
392 0.4589596709
393 0.458608372
394 0.4582566406
395 0.4580984408
396 0.4578053516
397 0.4575199976
398 0.4572882699
399 0.457067195
400 0.4568110277
401 0.4564230266
402 0.4561457412
403 0.4559009758
404 0.455725507
405 0.4553698095
406 0.4551320012
407 0.4548407653
408 0.4545775807
409 0.4543384066
410 0.4540637788
411 0.4538791563
412 0.4534969266
413 0.4531899444
414 0.4529541326
415 0.4528022306
416 0.4526112134
417 0.4522752011
418 0.452083733
419 0.4519394692
420 0.4517006599
421 0.4514521701
422 0.4510851514
423 0.4508538045
424 0.4505895935
425 0.4502002526
426 0.4499456242
427 0.4496745323
428 0.4493313724
429 0.4490790575
430 0.4488940556
431 0.4486460212
432 0.4483447227
433 0.4480982572
434 0.4479832003
435 0.4477332999
436 0.4475898153
437 0.4474369928
438 0.447126853
439 0.4468199959
440 0.4465798224
441 0.4463272835
442 0.4460991602
443 0.4458022526
444 0.4455493778
445 0.4452371905
446 0.4450141687
447 0.4448069925
448 0.4444327189
449 0.4443994147
450 0.4442303248
451 0.4438805161
452 0.4436571464
453 0.4435022638
454 0.4432931879
455 0.44312699
456 0.4430185333
457 0.4427448758
458 0.4424558429
459 0.4421113035
460 0.4418908966
461 0.4416734799
462 0.4416343014
463 0.4415009951
464 0.4411536897
465 0.441123113
466 0.4409620291
467 0.4406430136
468 0.4404634364
469 0.440251917
470 0.4400966694
471 0.4398534308
472 0.4395725572
473 0.4392967624
474 0.4391639083
475 0.4388338068
476 0.4386162314
477 0.4384100867
478 0.4381677899
479 0.437991867
480 0.4378002311
481 0.4376337558
482 0.43742962
483 0.4371812827
484 0.4367240078
485 0.436445737
486 0.4362442208
487 0.4359717682
488 0.4357659434
489 0.435542046
490 0.4350755783
491 0.4348932475
492 0.4347654828
493 0.4344801014
494 0.4342530844
495 0.4340556459
496 0.4337605943
497 0.433542244
498 0.4333825438
499 0.4332162119
0 1.068942757
1 1.042941062
2 1.017818973
3 0.9954188838
4 0.9735267885
5 0.9537807289
6 0.9354755366
7 0.9187623571
8 0.9023127175
9 0.8868191679
10 0.8730040311
11 0.860627421
12 0.8491307201
13 0.8373120751
14 0.825819299
15 0.815364983
16 0.8058413028
17 0.7959650463
18 0.7868600676
19 0.7784883379
20 0.7701307612
21 0.7622975086
22 0.7563031265
23 0.7495887487
24 0.7429723054
25 0.7372392086
26 0.7307956392
27 0.72524455
28 0.7192748437
29 0.7139143089
30 0.7087284348
31 0.7037127192
32 0.6988890737
33 0.6949220701
34 0.6905132299
35 0.6865428783
36 0.6825442625
37 0.678493613
38 0.6753394188
39 0.6720286547
40 0.6689512826
41 0.6659716333
42 0.6630764989
43 0.659979405
44 0.6571206305
45 0.6543860008
46 0.6516459562
47 0.6488159878
48 0.6465175253
49 0.6441297453
50 0.6416986449
51 0.6391230496
52 0.6366229183
53 0.6342664881
54 0.6323079472
55 0.6305081074
56 0.62840159
57 0.6266940801
58 0.6248571874
59 0.6235244597
60 0.6219566147
61 0.6204337402
62 0.6187130806
63 0.6170088968
64 0.615589758
65 0.6140922722
66 0.6129240173
67 0.6116130344
68 0.6104895206
69 0.6094134377
70 0.6080808677
71 0.6069087998
72 0.6059376837
73 0.6046673652
74 0.6034098585
75 0.6023554521
76 0.6010549909
77 0.5999185725
78 0.5986988724
79 0.5976798218
80 0.5967699009
81 0.5956767709
82 0.5945202655
83 0.5933468823
84 0.5923352617
85 0.5912329495
86 0.5906017033
87 0.5897119078
88 0.5889154258
89 0.5880849341
90 0.5871459274
91 0.5862610925
92 0.5854995429
93 0.5848049236
94 0.5842107749
95 0.583505085
96 0.5826180548
97 0.5818922325
98 0.5810033948
99 0.5805327081
100 0.5796118053
101 0.5787480749
102 0.5778552983
103 0.5771592524
104 0.5763560519
105 0.5755217776
106 0.574693159
107 0.5740325984
108 0.5733332696
109 0.5727932796
110 0.5721855741
111 0.5715813746
112 0.5707142227
113 0.5696757236
114 0.5691022951
115 0.5683067827
116 0.5675870432
117 0.5669024897
118 0.566486124
119 0.5658835071
120 0.5654351685
121 0.5649374002
122 0.5641840869
123 0.5636579743
124 0.5630732508
125 0.5626017666
126 0.5618269378
127 0.5612340032
128 0.5607264834
129 0.5602062292
130 0.5595741473
131 0.5594744956
132 0.5588128533
133 0.5583655792
134 0.5576841767
135 0.5570366592
136 0.5563692413
137 0.5558434603
138 0.5553565262
139 0.5549028143
140 0.5542420393
141 0.5537416549
142 0.5533645111
143 0.5525502359
144 0.551964004
145 0.5513711205
146 0.550670328
147 0.5500708666
148 0.5495710178
149 0.5491348099
150 0.5487764949
151 0.5482966498
152 0.5478112718
153 0.5471484806
154 0.5463325223
155 0.5459529093
156 0.5455842734
157 0.5452050181
158 0.5449451093
159 0.5445660503
160 0.5442224699
161 0.543859774
162 0.5434344075
163 0.5428666007
164 0.5423044133
165 0.5420020087
166 0.5417372893
167 0.5411407194
168 0.5404920135
169 0.5397785131
170 0.5393213651
171 0.5386490362
172 0.5382774466
173 0.5377320683
174 0.5373269499
175 0.5366982872
176 0.5362725514
177 0.5359097265
178 0.5353663714
179 0.5350468465
180 0.5347738379
181 0.5344498463
182 0.5339643331
183 0.5333646702
184 0.5329642669
185 0.5325614811
186 0.5320511457
187 0.5312388201
188 0.5309182557
189 0.5305264945
190 0.5301171286
191 0.529628972
192 0.5293146426
193 0.5289805915
194 0.5284659827
195 0.527862758
196 0.5274831458
197 0.5271515407
198 0.5266917025
199 0.5263565126
200 0.5260532248
201 0.5257055661
202 0.5254257524
203 0.524950575
204 0.5244807342
205 0.524249665
206 0.5234250272
207 0.5229129359
208 0.5225299607
209 0.5222031189
210 0.5216340204
211 0.5210763366
212 0.520463507
213 0.520267466
214 0.5198975885
215 0.5194786412
216 0.5191099277
217 0.5187960194
218 0.5185900424
219 0.5180914041
220 0.5176345588
221 0.5172814099
222 0.5167825065
223 0.5163917592
224 0.5161350334
225 0.5157133787
226 0.5152784319
227 0.5148803192
228 0.5144992304
229 0.5142535669
230 0.5139649031
231 0.513576616
232 0.5132171213
233 0.512763067
234 0.5123182195
235 0.5120334231
236 0.5115620916
237 0.5112360631
238 0.5107944946
239 0.5104228562
240 0.5102575232
241 0.5098562657
242 0.5096847762
243 0.5091203404
244 0.5084373577
245 0.5081469859
246 0.5079091193
247 0.5074818428
248 0.5071478105
249 0.5068570743
250 0.5063689292
251 0.5058932147
252 0.505662824
253 0.5052695033
254 0.5048413537
255 0.5045419313
256 0.5042639141
257 0.5036848245
258 0.5030974571
259 0.5027814387
260 0.5022425808
261 0.5018966871
262 0.5014832647
263 0.5010494012
264 0.5006483949
265 0.5003421562
266 0.4999624129
267 0.4996104834
268 0.499196608
269 0.4988927675
270 0.4981819706
271 0.4978315761
272 0.4973900121
273 0.4970109103
274 0.4965620122
275 0.4962427936
276 0.4958221039
277 0.4954809033
278 0.4948766247
279 0.4943739105
280 0.493975467
281 0.4935910408
282 0.493254366
283 0.4929261473
284 0.4925964609
285 0.4923808028
286 0.4921041946
287 0.4916744584
288 0.4913336962
289 0.4910190759
290 0.4906179297
291 0.4902202329
292 0.489883628
293 0.4896095455
294 0.4893633368
295 0.4891310576
296 0.4887803286
297 0.4884834707
298 0.4880679615
299 0.4878523011
300 0.4873943721
301 0.4871038251
302 0.4867376985
303 0.4864321061
304 0.486210863
305 0.4858144853
306 0.4856499406
307 0.485347457
308 0.4848908087
309 0.4845522859
310 0.4840624415
311 0.4837871556
312 0.4834783178
313 0.4831740873
314 0.4829482632
315 0.4826739322
316 0.4823400925
317 0.4819943761
318 0.4817866029
319 0.4815804613
320 0.4809581003
321 0.4807254623
322 0.4802466482
323 0.4798784133
324 0.4797171462
325 0.4793949176
326 0.4788800195
327 0.4786136279
328 0.4782427334
329 0.4778863666
330 0.4775479356
331 0.4773015039
332 0.4770363259
333 0.4768298065
334 0.4765892571
335 0.4764456817
336 0.4763636442
337 0.4760378853
338 0.4758876647
339 0.4756349977
340 0.4752603973
341 0.4750204768
342 0.4748473115
343 0.4745999562
344 0.4743993595
345 0.4737070725
346 0.4734187079
347 0.4732100567
348 0.4730721577
349 0.4728648397
350 0.4726551113
351 0.4723837123
352 0.4722697334
353 0.4720394971
354 0.4717581939
355 0.4715443272
356 0.4713122025
357 0.4709434579
358 0.4707309341
359 0.4705579301
360 0.469916571
361 0.4695748498
362 0.4695389297
363 0.4693263375
364 0.4692589765
365 0.468858875
366 0.4685511528
367 0.4682883236
368 0.4680511877
369 0.467827367
370 0.4675352989
371 0.4673511276
372 0.467120547
373 0.4668196585
374 0.4664704386
375 0.466300754
376 0.4660529477
377 0.4659205615
378 0.4656226599
379 0.4651948256
380 0.4649232323
381 0.4645354476
382 0.4639030521
383 0.4635351896
384 0.4633385917
385 0.4631669568
386 0.4630072732
387 0.4627835133
388 0.4627417677
389 0.4627061504
390 0.4625064093
391 0.4619443772
392 0.4617952848
393 0.4614354597
394 0.4612137172
395 0.4609780065
396 0.460803717
397 0.4605055516
398 0.4604654562
399 0.4601521805
400 0.4601218957
401 0.4598802793
402 0.4596294913
403 0.459359852
404 0.4593234097
405 0.4590768781
406 0.458797219
407 0.4585924348
408 0.4585649874
409 0.4585363276
410 0.4579354313
411 0.4575848613
412 0.4574072665
413 0.4572256847
414 0.4569922307
415 0.4564843783
416 0.4562989952
417 0.4557830648
418 0.4552632395
419 0.45506771
420 0.4548371775
421 0.4543536083
422 0.4539135342
423 0.4536574805
424 0.4532930869
425 0.4530580282
426 0.4528470071
427 0.4525708397
428 0.4524322649
429 0.4521065026
430 0.4519013222
431 0.4518403387
432 0.4516184857
433 0.4513714288
434 0.451037779
435 0.4507709996
436 0.4505847307
437 0.4503895992
438 0.4499681477
439 0.4496796353
440 0.4494430951
441 0.4491757112
442 0.4489244193
443 0.4485276391
444 0.4481718053
445 0.4479506854
446 0.4476990522
447 0.4471948591
448 0.4470853092
449 0.446865776
450 0.4465824143
451 0.4461086564
452 0.4460486522
453 0.4458924182
454 0.4457369368
455 0.4457090735
456 0.4453923753
457 0.4453669142
458 0.4450574113
459 0.4448489841
460 0.4446117109
461 0.4444696636
462 0.444285799
463 0.4441396144
464 0.4437465091
465 0.4435487801
466 0.4433583675
467 0.4431235913
468 0.4428925062
469 0.4425307044
470 0.4424258336
471 0.4424000888
472 0.4422433144
473 0.4420168935
474 0.4417496517
475 0.4414042041
476 0.4411749674
477 0.4407943905
478 0.440671799
479 0.4403708967
480 0.4401620051
481 0.4399914723
482 0.4396355813
483 0.4396078413
484 0.4394233159
485 0.4392648597
486 0.4390081285
487 0.4389768991
488 0.4386848902
489 0.4383633005
490 0.4382373497
491 0.4379751734
492 0.437740467
493 0.4377072609
494 0.437475001
495 0.4374511985
496 0.4372524578
497 0.4370094577
498 0.4367382154
499 0.4365629412