Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MLAir
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
esde
machine-learning
MLAir
Commits
54b535c1
Commit
54b535c1
authored
4 years ago
by
leufen1
Browse files
Options
Downloads
Patches
Plain Diff
updated some tests
parent
11cd07f3
No related branches found
No related tags found
3 merge requests
!253
include current develop
,
!252
Resolve "release v1.3.0"
,
!237
Resolve "individual transformation"
Pipeline
#59476
passed
4 years ago
Stage: test
Stage: docs
Stage: pages
Stage: deploy
Changes
2
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
test/test_configuration/test_defaults.py
+0
-3
0 additions, 3 deletions
test/test_configuration/test_defaults.py
test/test_helpers/test_statistics.py
+2
-50
2 additions, 50 deletions
test/test_helpers/test_statistics.py
with
2 additions
and
53 deletions
test/test_configuration/test_defaults.py
+
0
−
3
View file @
54b535c1
...
@@ -36,9 +36,6 @@ class TestAllDefaults:
...
@@ -36,9 +36,6 @@ class TestAllDefaults:
assert
DEFAULT_END
==
"
2017-12-31
"
assert
DEFAULT_END
==
"
2017-12-31
"
assert
DEFAULT_WINDOW_HISTORY_SIZE
==
13
assert
DEFAULT_WINDOW_HISTORY_SIZE
==
13
assert
DEFAULT_OVERWRITE_LOCAL_DATA
is
False
assert
DEFAULT_OVERWRITE_LOCAL_DATA
is
False
assert
isinstance
(
DEFAULT_TRANSFORMATION
,
TransformationClass
)
assert
DEFAULT_TRANSFORMATION
.
inputs
.
transform_method
==
"
standardise
"
assert
DEFAULT_TRANSFORMATION
.
targets
.
transform_method
==
"
standardise
"
assert
DEFAULT_TARGET_VAR
==
"
o3
"
assert
DEFAULT_TARGET_VAR
==
"
o3
"
assert
DEFAULT_TARGET_DIM
==
"
variables
"
assert
DEFAULT_TARGET_DIM
==
"
variables
"
assert
DEFAULT_WINDOW_LEAD_TIME
==
3
assert
DEFAULT_WINDOW_LEAD_TIME
==
3
...
...
This diff is collapsed.
Click to expand it.
test/test_helpers/test_statistics.py
+
2
−
50
View file @
54b535c1
...
@@ -3,7 +3,6 @@ import pandas as pd
...
@@ -3,7 +3,6 @@ import pandas as pd
import
pytest
import
pytest
import
xarray
as
xr
import
xarray
as
xr
from
mlair.helpers.statistics
import
DataClass
,
TransformationClass
from
mlair.helpers.statistics
import
standardise
,
standardise_inverse
,
standardise_apply
,
centre
,
centre_inverse
,
\
from
mlair.helpers.statistics
import
standardise
,
standardise_inverse
,
standardise_apply
,
centre
,
centre_inverse
,
\
centre_apply
,
\
centre_apply
,
\
apply_inverse_transformation
apply_inverse_transformation
...
@@ -72,7 +71,7 @@ class TestStandardise:
...
@@ -72,7 +71,7 @@ class TestStandardise:
(
lazy
(
'
xarray
'
),
'
index
'
)])
(
lazy
(
'
xarray
'
),
'
index
'
)])
def
test_apply_standardise_inverse
(
self
,
data_orig
,
dim
):
def
test_apply_standardise_inverse
(
self
,
data_orig
,
dim
):
mean
,
std
,
data
=
standardise
(
data_orig
,
dim
)
mean
,
std
,
data
=
standardise
(
data_orig
,
dim
)
data_recovered
=
apply_inverse_transformation
(
data
,
mean
,
std
)
data_recovered
=
apply_inverse_transformation
(
data
,
"
standardise
"
,
mean
,
std
)
assert
np
.
testing
.
assert_array_almost_equal
(
data_orig
,
data_recovered
)
is
None
assert
np
.
testing
.
assert_array_almost_equal
(
data_orig
,
data_recovered
)
is
None
@pytest.mark.parametrize
(
'
data_orig, mean, std, dim
'
,
[(
lazy
(
'
pandas
'
),
lazy
(
'
pd_mean
'
),
lazy
(
'
pd_std
'
),
0
),
@pytest.mark.parametrize
(
'
data_orig, mean, std, dim
'
,
[(
lazy
(
'
pandas
'
),
lazy
(
'
pd_mean
'
),
lazy
(
'
pd_std
'
),
0
),
...
@@ -106,7 +105,7 @@ class TestCentre:
...
@@ -106,7 +105,7 @@ class TestCentre:
(
lazy
(
'
xarray
'
),
'
index
'
)])
(
lazy
(
'
xarray
'
),
'
index
'
)])
def
test_apply_centre_inverse
(
self
,
data_orig
,
dim
):
def
test_apply_centre_inverse
(
self
,
data_orig
,
dim
):
mean
,
_
,
data
=
centre
(
data_orig
,
dim
)
mean
,
_
,
data
=
centre
(
data_orig
,
dim
)
data_recovered
=
apply_inverse_transformation
(
data
,
mean
,
method
=
"
centre
"
)
data_recovered
=
apply_inverse_transformation
(
data
,
mean
=
mean
,
method
=
"
centre
"
)
assert
np
.
testing
.
assert_array_almost_equal
(
data_orig
,
data_recovered
)
is
None
assert
np
.
testing
.
assert_array_almost_equal
(
data_orig
,
data_recovered
)
is
None
@pytest.mark.parametrize
(
'
data_orig, mean, dim
'
,
[(
lazy
(
'
pandas
'
),
lazy
(
'
pd_mean
'
),
0
),
@pytest.mark.parametrize
(
'
data_orig, mean, dim
'
,
[(
lazy
(
'
pandas
'
),
lazy
(
'
pd_mean
'
),
0
),
...
@@ -115,50 +114,3 @@ class TestCentre:
...
@@ -115,50 +114,3 @@ class TestCentre:
data
=
centre_apply
(
data_orig
,
mean
)
data
=
centre_apply
(
data_orig
,
mean
)
mean_expected
=
np
.
array
([
2
,
-
5
,
10
])
-
np
.
array
([
2
,
10
,
3
])
mean_expected
=
np
.
array
([
2
,
-
5
,
10
])
-
np
.
array
([
2
,
10
,
3
])
assert
np
.
testing
.
assert_almost_equal
(
data
.
mean
(
dim
),
mean_expected
,
decimal
=
1
)
is
None
assert
np
.
testing
.
assert_almost_equal
(
data
.
mean
(
dim
),
mean_expected
,
decimal
=
1
)
is
None
class
TestDataClass
:
def
test_init
(
self
):
dc
=
DataClass
()
assert
all
([
obj
is
None
for
obj
in
[
dc
.
data
,
dc
.
mean
,
dc
.
std
,
dc
.
max
,
dc
.
min
,
dc
.
transform_method
,
dc
.
_method
]])
def
test_init_values
(
self
):
dc
=
DataClass
(
data
=
12
,
mean
=
2
,
std
=
"
test
"
,
max
=
23.4
,
min
=
np
.
array
([
3
]),
transform_method
=
"
f
"
)
assert
dc
.
data
==
12
assert
dc
.
mean
==
2
assert
dc
.
std
==
"
test
"
assert
dc
.
max
==
23.4
assert
np
.
testing
.
assert_array_equal
(
dc
.
min
,
np
.
array
([
3
]))
is
None
assert
dc
.
transform_method
==
"
f
"
assert
dc
.
_method
is
None
def
test_as_dict
(
self
):
dc
=
DataClass
(
std
=
23
)
dc
.
_method
=
"
f(x)
"
assert
dc
.
as_dict
()
==
{
"
data
"
:
None
,
"
mean
"
:
None
,
"
std
"
:
23
,
"
max
"
:
None
,
"
min
"
:
None
,
"
transform_method
"
:
None
}
class
TestTransformationClass
:
def
test_init
(
self
):
tc
=
TransformationClass
()
assert
hasattr
(
tc
,
"
inputs
"
)
assert
isinstance
(
tc
.
inputs
,
DataClass
)
assert
hasattr
(
tc
,
"
targets
"
)
assert
isinstance
(
tc
.
targets
,
DataClass
)
assert
tc
.
inputs
.
mean
is
None
assert
tc
.
targets
.
std
is
None
def
test_init_values
(
self
):
tc
=
TransformationClass
(
inputs_mean
=
1
,
inputs_std
=
2
,
inputs_method
=
"
f
"
,
targets_mean
=
3
,
targets_std
=
4
,
targets_method
=
"
g
"
)
assert
tc
.
inputs
.
mean
==
1
assert
tc
.
inputs
.
std
==
2
assert
tc
.
inputs
.
transform_method
==
"
f
"
assert
tc
.
inputs
.
max
is
None
assert
tc
.
targets
.
mean
==
3
assert
tc
.
targets
.
std
==
4
assert
tc
.
targets
.
transform_method
==
"
g
"
assert
tc
.
inputs
.
min
is
None
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment