Skip to content
Snippets Groups Projects
Commit 7269e186 authored by v.gramlich1's avatar v.gramlich1
Browse files

debugging in postprocessing_plotting

parent da4e0ebc
No related branches found
No related tags found
1 merge request!302Draft: Resolve "Class-based Oversampling technique"
Pipeline #75770 passed
......@@ -145,15 +145,15 @@ class PlotOversamplingContingency(AbstractPlotClass):
obs = forecast_file.sel(type=self._obs_name)
logging.info(f"{station}: load pred")
predictions = [forecast_file.sel(type=self._model_name)]
logging.info(f"{station}: load comp")
logging.info(f"{station}: load comp, comp_list:{self._comp_names}")
for comp in self._comp_names:
c = self._load_competitors(station, [comp])
if c is not None:
logging.info(f"{station}: {comp} is not None")
predictions.append(c.sel(type=comp))
logging.info(f"itearate over thresholds")
for threshold in range(self._min_threshold, self._max_threshold):
for i, pred in enumerate(predictions):
logging.info(i)
for pred in predictions:
ta, fa, fb, tb = self._single_contingency(obs, pred, threshold)
contingency_array.loc[dict(thresholds=threshold, contingency_cell="ta", type=pred.type.values)] = ta
contingency_array.loc[dict(thresholds=threshold, contingency_cell="fa", type=pred.type.values)] = fa
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment