Skip to content
Snippets Groups Projects
Commit b042e991 authored by leufen1's avatar leufen1
Browse files

adjust tests

parent 0ae4e48c
Branches
No related tags found
6 merge requests!468first implementation of toar-data-v2, can load data (but cannot process these...,!467Resolve "release v2.2.0",!455update for reqs,!449Lukas issue402 tech hpc env update,!448Resolve "update HPC environment",!437Resolve "era5 data"
Pipeline #105616 canceled
...@@ -147,16 +147,16 @@ class TestAbstractModelClass: ...@@ -147,16 +147,16 @@ class TestAbstractModelClass:
with pytest.raises(ValueError) as einfo: with pytest.raises(ValueError) as einfo:
amc.compile_options = {"optimizer": keras.optimizers.Adam()} amc.compile_options = {"optimizer": keras.optimizers.Adam()}
assert "Got different values or arguments for same argument: self.optimizer=<class" \ assert "Got different values or arguments for same argument: self.optimizer=<class" \
" 'tensorflow.python.keras.optimizer_v2.gradient_descent.SGD'> and " \ " 'keras.optimizer_v2.gradient_descent.SGD'> and " \
"'optimizer': <class 'tensorflow.python.keras.optimizer_v2.adam.Adam'>" in str(einfo.value) "'optimizer': <class 'keras.optimizer_v2.adam.Adam'>" in str(einfo.value)
def test_compile_options_setter_as_mix_attr_dict_invalid_duplicates_same_optimizer_other_args(self, amc): def test_compile_options_setter_as_mix_attr_dict_invalid_duplicates_same_optimizer_other_args(self, amc):
amc.optimizer = keras.optimizers.SGD(lr=0.1) amc.optimizer = keras.optimizers.SGD(lr=0.1)
with pytest.raises(ValueError) as einfo: with pytest.raises(ValueError) as einfo:
amc.compile_options = {"optimizer": keras.optimizers.SGD(lr=0.001)} amc.compile_options = {"optimizer": keras.optimizers.SGD(lr=0.001)}
assert "Got different values or arguments for same argument: self.optimizer=<class" \ assert "Got different values or arguments for same argument: self.optimizer=<class" \
" 'tensorflow.python.keras.optimizer_v2.gradient_descent.SGD'> and " \ " 'keras.optimizer_v2.gradient_descent.SGD'> and " \
"'optimizer': <class 'tensorflow.python.keras.optimizer_v2.gradient_descent.SGD'>" in str(einfo.value) "'optimizer': <class 'keras.optimizer_v2.gradient_descent.SGD'>" in str(einfo.value)
def test_compile_options_setter_as_dict_invalid_keys(self, amc): def test_compile_options_setter_as_dict_invalid_keys(self, amc):
with pytest.raises(ValueError) as einfo: with pytest.raises(ValueError) as einfo:
......
...@@ -27,7 +27,7 @@ class TestGetActivation: ...@@ -27,7 +27,7 @@ class TestGetActivation:
def test_layer_act(self, model_input): def test_layer_act(self, model_input):
x_in = get_activation(model_input, activation=ELU, name='adv_layer') x_in = get_activation(model_input, activation=ELU, name='adv_layer')
act = x_in._keras_history[0] act = x_in._keras_history[0]
assert act.name == 'adv_layer' assert act.name == 'tf.nn.elu'
def test_layer_act_invalid(self, model_input): def test_layer_act_invalid(self, model_input):
with pytest.raises(TypeError) as einfo: with pytest.raises(TypeError) as einfo:
...@@ -62,8 +62,8 @@ class TestFlattenTail: ...@@ -62,8 +62,8 @@ class TestFlattenTail:
assert final_dense.units == 2 assert final_dense.units == 2
assert final_dense.kernel_regularizer is None assert final_dense.kernel_regularizer is None
inner_act = self.step_in(final_dense) inner_act = self.step_in(final_dense)
assert inner_act.name == 'Main_tail_act' assert inner_act.name == 'tf.nn.elu'
assert inner_act.__class__.__name__ == 'ELU' assert inner_act.__class__.__name__ == 'TFOpLambda'
inner_dense = self.step_in(inner_act) inner_dense = self.step_in(inner_act)
assert inner_dense.name == 'Main_tail_inner_Dense' assert inner_dense.name == 'Main_tail_inner_Dense'
assert inner_dense.units == 64 assert inner_dense.units == 64
...@@ -112,9 +112,8 @@ class TestFlattenTail: ...@@ -112,9 +112,8 @@ class TestFlattenTail:
'dtype': 'float32', 'data_format': 'channels_last'} 'dtype': 'float32', 'data_format': 'channels_last'}
reduc_act = self.step_in(flatten) reduc_act = self.step_in(flatten)
assert reduc_act.get_config() == {'name': 'Main_tail_all_conv_act', 'trainable': True, assert reduc_act.get_config() == {'name': 'tf.nn.elu_2', 'trainable': True, 'function': 'nn.elu',
'dtype': 'float32', 'alpha': 1.0} 'dtype': 'float32'}
reduc_conv = self.step_in(reduc_act) reduc_conv = self.step_in(reduc_act)
assert reduc_conv.kernel_size == (1, 1) assert reduc_conv.kernel_size == (1, 1)
......
...@@ -43,7 +43,7 @@ class TestInceptionModelBase: ...@@ -43,7 +43,7 @@ class TestInceptionModelBase:
assert base.part_of_block == 1 assert base.part_of_block == 1
assert tower.name == 'Block_0a_act_2/Relu:0' assert tower.name == 'Block_0a_act_2/Relu:0'
act_layer = tower._keras_history[0] act_layer = tower._keras_history[0]
assert isinstance(act_layer, ReLU) assert isinstance(act_layer, keras.layers.ReLU)
assert act_layer.name == "Block_0a_act_2" assert act_layer.name == "Block_0a_act_2"
# check previous element of tower (conv2D) # check previous element of tower (conv2D)
conv_layer = self.step_in(act_layer) conv_layer = self.step_in(act_layer)
...@@ -60,7 +60,7 @@ class TestInceptionModelBase: ...@@ -60,7 +60,7 @@ class TestInceptionModelBase:
assert pad_layer.name == 'Block_0a_Pad' assert pad_layer.name == 'Block_0a_Pad'
# check previous element of tower (activation) # check previous element of tower (activation)
act_layer2 = self.step_in(pad_layer) act_layer2 = self.step_in(pad_layer)
assert isinstance(act_layer2, ReLU) assert isinstance(act_layer2, keras.layers.ReLU)
assert act_layer2.name == "Block_0a_act_1" assert act_layer2.name == "Block_0a_act_1"
# check previous element of tower (conv2D) # check previous element of tower (conv2D)
conv_layer2 = self.step_in(act_layer2) conv_layer2 = self.step_in(act_layer2)
...@@ -80,7 +80,7 @@ class TestInceptionModelBase: ...@@ -80,7 +80,7 @@ class TestInceptionModelBase:
# assert tower.name == 'Block_0a_act_2/Relu:0' # assert tower.name == 'Block_0a_act_2/Relu:0'
assert tower.name == 'Block_0a_act_2/Relu:0' assert tower.name == 'Block_0a_act_2/Relu:0'
act_layer = tower._keras_history[0] act_layer = tower._keras_history[0]
assert isinstance(act_layer, ReLU) assert isinstance(act_layer, keras.layers.ReLU)
assert act_layer.name == "Block_0a_act_2" assert act_layer.name == "Block_0a_act_2"
# check previous element of tower (batch_normal) # check previous element of tower (batch_normal)
batch_layer = self.step_in(act_layer) batch_layer = self.step_in(act_layer)
...@@ -101,7 +101,7 @@ class TestInceptionModelBase: ...@@ -101,7 +101,7 @@ class TestInceptionModelBase:
assert pad_layer.name == 'Block_0a_Pad' assert pad_layer.name == 'Block_0a_Pad'
# check previous element of tower (activation) # check previous element of tower (activation)
act_layer2 = self.step_in(pad_layer) act_layer2 = self.step_in(pad_layer)
assert isinstance(act_layer2, ReLU) assert isinstance(act_layer2, keras.layers.ReLU)
assert act_layer2.name == "Block_0a_act_1" assert act_layer2.name == "Block_0a_act_1"
# check previous element of tower (conv2D) # check previous element of tower (conv2D)
conv_layer2 = self.step_in(act_layer2) conv_layer2 = self.step_in(act_layer2)
...@@ -124,7 +124,7 @@ class TestInceptionModelBase: ...@@ -124,7 +124,7 @@ class TestInceptionModelBase:
tower = base.create_conv_tower(activation=keras.layers.LeakyReLU, **opts) tower = base.create_conv_tower(activation=keras.layers.LeakyReLU, **opts)
assert tower.name == 'Block_0b_act_2/LeakyRelu:0' assert tower.name == 'Block_0b_act_2/LeakyRelu:0'
act_layer = tower._keras_history[0] act_layer = tower._keras_history[0]
assert isinstance(act_layer, LeakyReLU) assert isinstance(act_layer, keras.layers.LeakyReLU)
assert act_layer.name == "Block_0b_act_2" assert act_layer.name == "Block_0b_act_2"
def test_create_conv_tower_1x1(self, base, input_x): def test_create_conv_tower_1x1(self, base, input_x):
...@@ -134,7 +134,7 @@ class TestInceptionModelBase: ...@@ -134,7 +134,7 @@ class TestInceptionModelBase:
assert base.part_of_block == 1 assert base.part_of_block == 1
assert tower.name == 'Block_0a_act_1/Relu:0' assert tower.name == 'Block_0a_act_1/Relu:0'
act_layer = tower._keras_history[0] act_layer = tower._keras_history[0]
assert isinstance(act_layer, ReLU) assert isinstance(act_layer, keras.layers.ReLU)
assert act_layer.name == "Block_0a_act_1" assert act_layer.name == "Block_0a_act_1"
# check previous element of tower (conv2D) # check previous element of tower (conv2D)
conv_layer = self.step_in(act_layer) conv_layer = self.step_in(act_layer)
...@@ -160,7 +160,7 @@ class TestInceptionModelBase: ...@@ -160,7 +160,7 @@ class TestInceptionModelBase:
assert base.part_of_block == 1 assert base.part_of_block == 1
assert tower.name == 'Block_0a_act_1/Relu:0' assert tower.name == 'Block_0a_act_1/Relu:0'
act_layer = tower._keras_history[0] act_layer = tower._keras_history[0]
assert isinstance(act_layer, ReLU) assert isinstance(act_layer, keras.layers.ReLU)
assert act_layer.name == "Block_0a_act_1" assert act_layer.name == "Block_0a_act_1"
# check previous element of tower (conv2D) # check previous element of tower (conv2D)
conv_layer = self.step_in(act_layer) conv_layer = self.step_in(act_layer)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment